Comprehensive Treatise of Electrochemistry (eBook, PDF)
Volume 7 Kinetics and Mechanisms of Electrode Processes
Redaktion: Horsman, Peter; Yeager, E.; Conway, Brian E.
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Comprehensive Treatise of Electrochemistry (eBook, PDF)
Volume 7 Kinetics and Mechanisms of Electrode Processes
Redaktion: Horsman, Peter; Yeager, E.; Conway, Brian E.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 71.99MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 806
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461335849
- Artikelnr.: 44176560
- Verlag: Springer US
- Seitenzahl: 806
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461335849
- Artikelnr.: 44176560
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Quantum Electrochemical Kinetics: Continuum Theory.- 1. Introduction.- 2. The Model.- 3. General Expressions for the Transition Probability.- 4. Transition Probability for Fixed Coordinates of the Ions and Reactants.- 5. Proton Transfer Reactions.- 5.1. Proton Transfer in the Case of Strong Coupling with the Medium.- 5.2. Proton Transfer in the Case of Weak Coupling with the Medium.- 6. Effect of the Discrete Structure of the Electrical Double Layer on the Kinetics.- 7. The Step of Electrochemical Desorption of Hydrogen Atoms.- 8. The Role Played by the Electronic Structure of the Electrode.- 9. Experimental Verification of the Theory.- References.- 2. Molecular Aspects of Quantum Electrode Kinetics.- 1. Introduction.- 2. Correlation between Electrochemical Electron and Spectroscopic Photon Transfer Process.- 3. Applicability of Time-Dependent Perturbation Theory for Electron Transfer Processes at Electrodes.- 4. Proton Transfer at Interfaces.- 4.1. Gurney's Quantum Mechanical Model of Proton Transfer.- 4.2. Butler's Modification of Gurney's Model.- 4.3. The Quantum Character of Proton Transfer.- 4.4. Degree of Validity of the WKB Tunneling Probability Expression for Proton Transfer.- 4.5. A Model of Electrochemical Hydrogen Evolution Reaction.- 5. Quantal Aspects of Photoelectrochemical Kinetics.- 5.1. Photoeffect at Metal-Solution Interface.- 5.2. Non-Tafel Behavior of Photocurrent at Metal-Solution Interface.- 5.3. Photoeffect at Semiconductor-Solution Interface.- 6. Tunneling at the Oxide-Covered Electrode.- 7. Fermi Energy in Solution.- 8. Distribution of Electron States in Ions in Solution.- 9. The Adiabaticity and Nonadiabaticity in Electron Transfer Reactions.- 9.1. Landau-Zener Formulation.- 9.2. Transmission Coefficient, K, for Homogeneous RedoxReactions.- 10. Transition Probability of the Electron at the Electrode-Solution Interface.- 11. Concluding Remarks.- References.- 3. Kinetics of Electrochemical Reactions at Metal-Solution Interfaces.- 1. Introduction: Steps of Electrode Processes.- 2. Phenomenological Theory of the Elementary Act of an Electrode Reaction.- 2.1. Brønsted-Polanyi Relation and Electrode Reaction Activation Energy.- 2.2. Electronic Work Function and Related Values in Electrochemical Kinetics.- 2.3. Activity Coefficient of an Activated Complex.- 2.4. Temperature Dependence of Electrode Reaction Rates.- 2.5. Activationless and Barrierless Electrode Processes.- 3. Formal Kinetics of Electrode Reactions.- 3.1. Kinetic Equations.- 3.2. Stoichiometric Numbers.- 4. Electrode Double-Layer Structure and Electrode Reaction Rate..- 4.1. Basic Relations.- 4.2. Hydrogen Evolution.- 4.3. Reduction of Anions.- 4.4. Electrode Reactions of Organic Compounds.- References.- 4. Electrocatalysis.- 1. Introduction.- 2. Electrocatalysis and Catalysis.- 2.1. General.- 2.2. Effect of Potential on Rate.- 3. The Rates of Complex Processes.- 4. Potential Energy Diagrams and Electrocatalysis.- 4.1. General.- 4.2. Some Correlations.- 5. Some Quantum Mechanical Aspects.- 5.1. General.- 5.2. Radiationless Transfer Theories.- 6. Some Electrocatalytic Reactions.- 6.1. General.- 6.2. Hydrogen Electrode Reaction.- 6.3. Oxygen Electrode Reactions.- 6.4. Organic Oxidations.- 6.5. Chlorine Evolution.- 6.6. General Remarks on Practical Electrocatalysts.- References.- 5. Hydrogen Electrode Reaction on Electrocatalytically Active Metals.- 1. Introduction.- 2. Adsorption of Hydrogen on Metal Electrodes.- 2.1. Hydrogen Wave by a Potential Sweep Technique.- 2.2. Adsorption Isotherm for Atomic Hydrogen.- 2.3. Structure of theHydrogen Wave and Experiments on Single-Crystal Planes.- 3. Basic Kinetic Equations.- 4. Experimental Behavior and Possible Mechanisms-Existence of a Unique Rate-Determining Step.- 4.1. Possible Reaction Routes and Mechanisms.- 4.2. The Stoichiometric Number.- 4.3. The Tafel Slope.- 4.4. Magnitude of the Tafel Slope.- 4.5. The Reaction Orders.- 5. Mechanism with No Unique Rate-Determining Step.- 5.1. Tracer Experiments.- 5.2. Tafel Lines and Reaction Orders.- 5.3. Absence of rds and Affinity Distribution among the Constituent Steps.- 5.4. Synthesis of the Overall Kinetics.- 5.5. Transient Experiments on the Pd Hydrogen Electrode.- 6. Related Topics.- 6.1. Effect of Catalytic Poisons upon the Individual Step Rates.- 6.2. Hydrogen Pressure Equivalent to Hydrogen Overpotential.- 6.3. Electrolytic Hydrogenation of Organic Substances.- 7. Electrode Materials.- 7.1. Pure Metals.- 7.2. Composite Materials.- References.- 6. Oxygen Electrochemistry.- 1. Introduction.- 2. Thermodynamics of the Oxygen Electrode.- 3. Open-Circuit Potentials.- 4. Oxygen Adsorbed Species and Anodic Films on Platinum and Other Noble Metals.- 4.1. Electrochemical Studies.- 4.2. In Situ Optical Studies.- 4.3. In Situ Surface Conductivity Measurements.- 4.4. Ex Situ Characterizations.- 5. The Anodic Oxygen Evolution Reaction (OER).- 5.1. General Features.- 5.2. Kinetics and Mechanisms of the Oxygen Evolution Reaction on Metal and. Oxide Electrodes.- 6. Cathodic Reactions of Oxygen (Oxygen Cathodes).- 6.1. The General Scheme of Parallel and Series Reactions of Oxygen and Hydrogen Peroxide.- 6.2. The Kinetics of Molecular Oxygen Reduction on Different Metallic Electrodes.- 6.3. Oxygen Reduction on Nonmetallic Materials.- 7. Concluding Remarks.- References.- 7. Deposition and Dissolution of Metals andAlloys. Part A: Electrocrystallization.- 1. Introduction.- 2. Kinetics of Atom Incorporation.- 2.1. The Structure of a Crystalline Surface.- 2.2. The Propagation Rate of Steps.- 2.3. The Current Density on a Stepped Crystal Face.- 3. Metal Deposition on a Perfect Crystal Face.- 3.1. Energy and Rate of Formation of Two-Dimensional Nuclei.- 3.2. Kinetics of Step Propagation and Mechanism of Metal Deposition.- 3.3. Deposition Kinetics on Perfect Crystal Faces.- 4. Metal Deposition on Faces Intersected by Screw Dislocations.- 4.1. The Theory of Spiral Growth.- 4.2. Current Density and Morphology of Growth.- 5. Electrolytic Phase Formation.- 5.1. Equilibrium Forms and Forms of Growth of Crystals.- 5.2. The Nucleation Rate.- 5.3. The Nucleation-Rate-Overpotential Relation.- 5.4. Comparison with Experimental Data.- 6. Conclusions and Outlook.- References.- 7. Deposition and Dissolution of Metals and Alloys. Part B: Mechanisms, Kinetics, Texture, and Morphology.- 1. Introduction.- 2. Specific Features of the Thermodynamics of Metal and Alloy Phase Formation and Degradation.- 2.1. Equilibration of a Metal Surface with Electrolyte Containing Metal Ions-the Problem of the Reversible Potential.- 2.2. Reversible Potentials of Alloys.- 2.3. Underpotential Deposition of Metals on Foreign Substrates.- 2.4. Effect of Interactions of the Metal Ion in Solution on the Reversible Potential.- 2.5. Effect of pH on Electrode Potential.- 3. Likely Mechanisms of Metal Ion Discharge and Their Kinetic Consequences.- 3.1. Mechanism and Kinetics of the Electrode Process.- 3.2. Pseudocapacitance Effects and the Concentration of Intermediate Species.- 3.3. Effect of Anions on the Kinetics of Metal Deposition and Dissolution.- 3.4. Effect of Substrate on the Kinetics of Activation-ControlledReactions.- of Metals.- 3.5. Kinetics of Codeposition of Metals and Effects on Alloy Phase Formation.- 4. Totally Irreversible Dissolution of Metals.- 4.1. The "Floating" Electrode Potential.- 4.2. Dissolution with the Formation of Insoluble Substances.- 4.3. Acceleration of Anodic Dissolution of Metals under Strain.- 5. Formation and Physical Properties of Metallic Deposits Obtained under Conditions of Slow Discharge and Incorporation.- 5.1. Effect of Substrate on the Growth of the Deposit.- 5.2. Factors Affecting Grain Size in a Compact Deposit.- 5.3. The Appearance of Texture in Metal Deposits.- 5.4. Development of Stress in Metal Deposits.- 6. Effect of Slow Transport of Species to the Electrode on Surface Morphology of Metal Deposits.- 6.1. Amplification of Surface Roughness.- 6.2. The Appearance and Growth of Dendrites.- 6.3. The Formation of Metal Powders.- 6.4. Effect of Periodically Changing Conditions of Deposition.- 6.5. The Phenomenon of Electropolishing.- 7. Effect of Adsorption of Foreign Substances on Surface Morphology of Metal Deposits.- 7.1. The Growth of Whiskers.- 7.2. Leveling in Metal Deposition.- 8. Conclusion.- References.- 8. Processes at Semiconductor Electrodes.- 1. Introduction.- 2. Potential and Charge Distribution at Solid-Electrolyte Interfaces.- 3. Energy Levels in Solids and Electrolytes.- 3.1. Absolute and Conventional Electrode Potentials.- 3.2. Energy Levels in Solids.- 3.3. Energy Levels in Electrolytes.- 3.4. Energy Levels at Semiconductor-Electrolyte Interfaces.- 4. Electrode Kinetics.- 4.1. Rate of Electron Transfer (Theory).- 4.2. Electrode Reactions in Electrolytes without Redox Systems.- 4.3. Redox Processes.- 4.4. Electron Transfer Processes at Organic Insulator Electrodes.- 4.5. Evaluations of Exchange Currents andDetermination of Reorientation Energies.- 5. Photoeffects.- 5.1. Photopotentials and Photocurrents.- 5.2. Applications in Electrode Kinetics.- 5.3. Photostimulated Reactions at Organic Electrodes.- 6. Reactions of Excited Molecules at Electrodes.- 6.1. Energy Levels of Excited Molecules.- 6.2. Electron Transfer Process.- 6.3. Relaxation Phenomena, Quenching, Supersensitization.- 6.4. Competitive Photochemical Reactions in the Electrolyte.- 6.5. Production of Excited Molecules by Electron Transfer.- 7. Conclusions.- References.- 9. Electrochemistry in Molten Salts.- 1. Introduction.- 1.1. General.- 1.2. Complexions.- 1.3. Acidity and Basicity.- 1.4. emf Series and Reference Electrodes.- 2. Electroanalytical Aspects.- 2.1. General Methodology.- 2.2. Ion Transport.- 2.3. Ionic Adsorption.- 2.4. Coupled Chemical Reactions.- 2.5. Solution Stability.- 3. The Metal-Molten Salt Interface.- 3.1. General Aspects.- 3.2. The Electrical Multilayer Close to Eq = 0.- 3.3. The Electrical Multilayer Remote from Eq = 0.- 4. Kinetics and Mechanisms of Electrode Reactions.- 4.1. Problems and Methods of Approach.- 4.2. Electrode Reactions Involving Homogeneous Redox Reactions.- 4.3. Electrode Reactions at Liquid Metal Electrodes.- 4.4. Electrode Reactions at Solid Metal Electrodes.- 4.5. The Electroactivity of Nonmetallic Anions.- 5. Applications.- 5.1. General.- 5.2. Metals Recovery and Processing.- 5.3. Batteries.- 5.4. Fuel Cells.- 5.5. Corrosion.- 5.6. Anodizing.- 6. Experimental Procedures.- 6.1. Materials, Electrodes, and Operating Conditions.- 6.2. Nitrates.- 6.3. Halides.- 6.4. Other Salts.- References.- 10. Organic Electrode Processes: Kinetics, Mechanisms, and Prospects for Commercial Development.- 1. Historical Aspects.- 2. Introduction and Nature of Organic Electrode Processes.- 3. Classification of Organic Electrode Reactions.- 4. Kinetic Equations for Electrochemical Reactions.- 4.1. Factors in the Kinetics of Organic Electrode Reactions.- 4.2. Electrode Potential, E, and the Rate Equations for Electron Transfer Reactions.- 4.3. Treatments for More Complex Electrochemical Reactions.- 4.4. Dependence of Rates of Organic Electrode Reactions on the Electrode Material.- 5. Reaction Yields in Relation to Coulombic Efficiency and Conditions of Electrolysis.- 5.1. Current Efficiencies and Coulombic Yields.- 5.2. Significance of Controlled Potential Electrolysis.- 5.3. Coulometry.- 5.4. Preparative Methods.- 6. Role of Adsorption in Electro-Organic Reactions.- 6.1. Factors in Adsorption and the Formulation of Isotherms.- 6.2. Methods for Investigation of Adsorption of Organic Substances.- 6.3. Reaction Order and Adsorption in Kinetics of Electro-Organic Processes.- 6.4. Adsorption and Solvation: Solvent Effects in Organic Adsorption.- 6.5. Adsorption and the Electrode Metal.- 7. Organic Reactions under Diffusion Control at Electrodes.- 7.1. Introduction.- 7.2. Diffusion-Limited Electrode Processes at Solid Metals.- 7.3. Polarographic Conditions: Diffusion at Mercury Drops.- 7.4. The Mass Transport Problems in Preparative Electro-Organic Chemistry and Cell Design.- 8. Polarographic Methods and Related Techniques for the Study of Electro- Organic Reactions.- 8.1. Introduction.- 8.2. Fundamental Aspects of Polarography.- 8.3. Criteria of Polarographic Reversibility.- 8.4. What Information May Be Obtained from Classical Polarography?.- 8.5. Other Electrochemical Techniques Related to Polarography.- 8.6. Polarographic Studies of pH Effects and Reaction Mechanisms.- 9. Steric Aspects of Electro-Organic Reaction Mechanisms.- 9.1. Adsorption of Intermediates and Stereochemical Effects.- 9.2. Alkyl Halide Reduction and Stereochemical Effects.- 10. Isotope Effects in Mechanistic Studies.- 11. Electrocatalytic Types of Reaction with Small Organic Molecules.- 12. Anodic Reactions with Thick-Film Oxides on Electrodes.- 12.1. Reactions at Bulk-Type Base Metal Oxide Films.- 12.2. Reactions of Organic Substances at High Anodic Potentials on Thick Noble Metal Oxide Films.- 13. Discussion of Some Reactions and Their Mechanisms That Have Possibilities for Commercial Development.- 13.1. Oxidation of Aliphatic Hydrocarbons.- 13.2. Anodic Substitution Reactions with Aromatic Hydrocarbons..- 13.3. Electroreduction Processes.- 13.4. Coupling Reactions.- 13.5. Electroinitiated Polymerizations.- 14. Economic and Commercial Aspects of Organic Electrode Processes.- 15. Conclusions Regarding Industrial Applications.- References.
1. Quantum Electrochemical Kinetics: Continuum Theory.- 1. Introduction.- 2. The Model.- 3. General Expressions for the Transition Probability.- 4. Transition Probability for Fixed Coordinates of the Ions and Reactants.- 5. Proton Transfer Reactions.- 5.1. Proton Transfer in the Case of Strong Coupling with the Medium.- 5.2. Proton Transfer in the Case of Weak Coupling with the Medium.- 6. Effect of the Discrete Structure of the Electrical Double Layer on the Kinetics.- 7. The Step of Electrochemical Desorption of Hydrogen Atoms.- 8. The Role Played by the Electronic Structure of the Electrode.- 9. Experimental Verification of the Theory.- References.- 2. Molecular Aspects of Quantum Electrode Kinetics.- 1. Introduction.- 2. Correlation between Electrochemical Electron and Spectroscopic Photon Transfer Process.- 3. Applicability of Time-Dependent Perturbation Theory for Electron Transfer Processes at Electrodes.- 4. Proton Transfer at Interfaces.- 4.1. Gurney's Quantum Mechanical Model of Proton Transfer.- 4.2. Butler's Modification of Gurney's Model.- 4.3. The Quantum Character of Proton Transfer.- 4.4. Degree of Validity of the WKB Tunneling Probability Expression for Proton Transfer.- 4.5. A Model of Electrochemical Hydrogen Evolution Reaction.- 5. Quantal Aspects of Photoelectrochemical Kinetics.- 5.1. Photoeffect at Metal-Solution Interface.- 5.2. Non-Tafel Behavior of Photocurrent at Metal-Solution Interface.- 5.3. Photoeffect at Semiconductor-Solution Interface.- 6. Tunneling at the Oxide-Covered Electrode.- 7. Fermi Energy in Solution.- 8. Distribution of Electron States in Ions in Solution.- 9. The Adiabaticity and Nonadiabaticity in Electron Transfer Reactions.- 9.1. Landau-Zener Formulation.- 9.2. Transmission Coefficient, K, for Homogeneous RedoxReactions.- 10. Transition Probability of the Electron at the Electrode-Solution Interface.- 11. Concluding Remarks.- References.- 3. Kinetics of Electrochemical Reactions at Metal-Solution Interfaces.- 1. Introduction: Steps of Electrode Processes.- 2. Phenomenological Theory of the Elementary Act of an Electrode Reaction.- 2.1. Brønsted-Polanyi Relation and Electrode Reaction Activation Energy.- 2.2. Electronic Work Function and Related Values in Electrochemical Kinetics.- 2.3. Activity Coefficient of an Activated Complex.- 2.4. Temperature Dependence of Electrode Reaction Rates.- 2.5. Activationless and Barrierless Electrode Processes.- 3. Formal Kinetics of Electrode Reactions.- 3.1. Kinetic Equations.- 3.2. Stoichiometric Numbers.- 4. Electrode Double-Layer Structure and Electrode Reaction Rate..- 4.1. Basic Relations.- 4.2. Hydrogen Evolution.- 4.3. Reduction of Anions.- 4.4. Electrode Reactions of Organic Compounds.- References.- 4. Electrocatalysis.- 1. Introduction.- 2. Electrocatalysis and Catalysis.- 2.1. General.- 2.2. Effect of Potential on Rate.- 3. The Rates of Complex Processes.- 4. Potential Energy Diagrams and Electrocatalysis.- 4.1. General.- 4.2. Some Correlations.- 5. Some Quantum Mechanical Aspects.- 5.1. General.- 5.2. Radiationless Transfer Theories.- 6. Some Electrocatalytic Reactions.- 6.1. General.- 6.2. Hydrogen Electrode Reaction.- 6.3. Oxygen Electrode Reactions.- 6.4. Organic Oxidations.- 6.5. Chlorine Evolution.- 6.6. General Remarks on Practical Electrocatalysts.- References.- 5. Hydrogen Electrode Reaction on Electrocatalytically Active Metals.- 1. Introduction.- 2. Adsorption of Hydrogen on Metal Electrodes.- 2.1. Hydrogen Wave by a Potential Sweep Technique.- 2.2. Adsorption Isotherm for Atomic Hydrogen.- 2.3. Structure of theHydrogen Wave and Experiments on Single-Crystal Planes.- 3. Basic Kinetic Equations.- 4. Experimental Behavior and Possible Mechanisms-Existence of a Unique Rate-Determining Step.- 4.1. Possible Reaction Routes and Mechanisms.- 4.2. The Stoichiometric Number.- 4.3. The Tafel Slope.- 4.4. Magnitude of the Tafel Slope.- 4.5. The Reaction Orders.- 5. Mechanism with No Unique Rate-Determining Step.- 5.1. Tracer Experiments.- 5.2. Tafel Lines and Reaction Orders.- 5.3. Absence of rds and Affinity Distribution among the Constituent Steps.- 5.4. Synthesis of the Overall Kinetics.- 5.5. Transient Experiments on the Pd Hydrogen Electrode.- 6. Related Topics.- 6.1. Effect of Catalytic Poisons upon the Individual Step Rates.- 6.2. Hydrogen Pressure Equivalent to Hydrogen Overpotential.- 6.3. Electrolytic Hydrogenation of Organic Substances.- 7. Electrode Materials.- 7.1. Pure Metals.- 7.2. Composite Materials.- References.- 6. Oxygen Electrochemistry.- 1. Introduction.- 2. Thermodynamics of the Oxygen Electrode.- 3. Open-Circuit Potentials.- 4. Oxygen Adsorbed Species and Anodic Films on Platinum and Other Noble Metals.- 4.1. Electrochemical Studies.- 4.2. In Situ Optical Studies.- 4.3. In Situ Surface Conductivity Measurements.- 4.4. Ex Situ Characterizations.- 5. The Anodic Oxygen Evolution Reaction (OER).- 5.1. General Features.- 5.2. Kinetics and Mechanisms of the Oxygen Evolution Reaction on Metal and. Oxide Electrodes.- 6. Cathodic Reactions of Oxygen (Oxygen Cathodes).- 6.1. The General Scheme of Parallel and Series Reactions of Oxygen and Hydrogen Peroxide.- 6.2. The Kinetics of Molecular Oxygen Reduction on Different Metallic Electrodes.- 6.3. Oxygen Reduction on Nonmetallic Materials.- 7. Concluding Remarks.- References.- 7. Deposition and Dissolution of Metals andAlloys. Part A: Electrocrystallization.- 1. Introduction.- 2. Kinetics of Atom Incorporation.- 2.1. The Structure of a Crystalline Surface.- 2.2. The Propagation Rate of Steps.- 2.3. The Current Density on a Stepped Crystal Face.- 3. Metal Deposition on a Perfect Crystal Face.- 3.1. Energy and Rate of Formation of Two-Dimensional Nuclei.- 3.2. Kinetics of Step Propagation and Mechanism of Metal Deposition.- 3.3. Deposition Kinetics on Perfect Crystal Faces.- 4. Metal Deposition on Faces Intersected by Screw Dislocations.- 4.1. The Theory of Spiral Growth.- 4.2. Current Density and Morphology of Growth.- 5. Electrolytic Phase Formation.- 5.1. Equilibrium Forms and Forms of Growth of Crystals.- 5.2. The Nucleation Rate.- 5.3. The Nucleation-Rate-Overpotential Relation.- 5.4. Comparison with Experimental Data.- 6. Conclusions and Outlook.- References.- 7. Deposition and Dissolution of Metals and Alloys. Part B: Mechanisms, Kinetics, Texture, and Morphology.- 1. Introduction.- 2. Specific Features of the Thermodynamics of Metal and Alloy Phase Formation and Degradation.- 2.1. Equilibration of a Metal Surface with Electrolyte Containing Metal Ions-the Problem of the Reversible Potential.- 2.2. Reversible Potentials of Alloys.- 2.3. Underpotential Deposition of Metals on Foreign Substrates.- 2.4. Effect of Interactions of the Metal Ion in Solution on the Reversible Potential.- 2.5. Effect of pH on Electrode Potential.- 3. Likely Mechanisms of Metal Ion Discharge and Their Kinetic Consequences.- 3.1. Mechanism and Kinetics of the Electrode Process.- 3.2. Pseudocapacitance Effects and the Concentration of Intermediate Species.- 3.3. Effect of Anions on the Kinetics of Metal Deposition and Dissolution.- 3.4. Effect of Substrate on the Kinetics of Activation-ControlledReactions.- of Metals.- 3.5. Kinetics of Codeposition of Metals and Effects on Alloy Phase Formation.- 4. Totally Irreversible Dissolution of Metals.- 4.1. The "Floating" Electrode Potential.- 4.2. Dissolution with the Formation of Insoluble Substances.- 4.3. Acceleration of Anodic Dissolution of Metals under Strain.- 5. Formation and Physical Properties of Metallic Deposits Obtained under Conditions of Slow Discharge and Incorporation.- 5.1. Effect of Substrate on the Growth of the Deposit.- 5.2. Factors Affecting Grain Size in a Compact Deposit.- 5.3. The Appearance of Texture in Metal Deposits.- 5.4. Development of Stress in Metal Deposits.- 6. Effect of Slow Transport of Species to the Electrode on Surface Morphology of Metal Deposits.- 6.1. Amplification of Surface Roughness.- 6.2. The Appearance and Growth of Dendrites.- 6.3. The Formation of Metal Powders.- 6.4. Effect of Periodically Changing Conditions of Deposition.- 6.5. The Phenomenon of Electropolishing.- 7. Effect of Adsorption of Foreign Substances on Surface Morphology of Metal Deposits.- 7.1. The Growth of Whiskers.- 7.2. Leveling in Metal Deposition.- 8. Conclusion.- References.- 8. Processes at Semiconductor Electrodes.- 1. Introduction.- 2. Potential and Charge Distribution at Solid-Electrolyte Interfaces.- 3. Energy Levels in Solids and Electrolytes.- 3.1. Absolute and Conventional Electrode Potentials.- 3.2. Energy Levels in Solids.- 3.3. Energy Levels in Electrolytes.- 3.4. Energy Levels at Semiconductor-Electrolyte Interfaces.- 4. Electrode Kinetics.- 4.1. Rate of Electron Transfer (Theory).- 4.2. Electrode Reactions in Electrolytes without Redox Systems.- 4.3. Redox Processes.- 4.4. Electron Transfer Processes at Organic Insulator Electrodes.- 4.5. Evaluations of Exchange Currents andDetermination of Reorientation Energies.- 5. Photoeffects.- 5.1. Photopotentials and Photocurrents.- 5.2. Applications in Electrode Kinetics.- 5.3. Photostimulated Reactions at Organic Electrodes.- 6. Reactions of Excited Molecules at Electrodes.- 6.1. Energy Levels of Excited Molecules.- 6.2. Electron Transfer Process.- 6.3. Relaxation Phenomena, Quenching, Supersensitization.- 6.4. Competitive Photochemical Reactions in the Electrolyte.- 6.5. Production of Excited Molecules by Electron Transfer.- 7. Conclusions.- References.- 9. Electrochemistry in Molten Salts.- 1. Introduction.- 1.1. General.- 1.2. Complexions.- 1.3. Acidity and Basicity.- 1.4. emf Series and Reference Electrodes.- 2. Electroanalytical Aspects.- 2.1. General Methodology.- 2.2. Ion Transport.- 2.3. Ionic Adsorption.- 2.4. Coupled Chemical Reactions.- 2.5. Solution Stability.- 3. The Metal-Molten Salt Interface.- 3.1. General Aspects.- 3.2. The Electrical Multilayer Close to Eq = 0.- 3.3. The Electrical Multilayer Remote from Eq = 0.- 4. Kinetics and Mechanisms of Electrode Reactions.- 4.1. Problems and Methods of Approach.- 4.2. Electrode Reactions Involving Homogeneous Redox Reactions.- 4.3. Electrode Reactions at Liquid Metal Electrodes.- 4.4. Electrode Reactions at Solid Metal Electrodes.- 4.5. The Electroactivity of Nonmetallic Anions.- 5. Applications.- 5.1. General.- 5.2. Metals Recovery and Processing.- 5.3. Batteries.- 5.4. Fuel Cells.- 5.5. Corrosion.- 5.6. Anodizing.- 6. Experimental Procedures.- 6.1. Materials, Electrodes, and Operating Conditions.- 6.2. Nitrates.- 6.3. Halides.- 6.4. Other Salts.- References.- 10. Organic Electrode Processes: Kinetics, Mechanisms, and Prospects for Commercial Development.- 1. Historical Aspects.- 2. Introduction and Nature of Organic Electrode Processes.- 3. Classification of Organic Electrode Reactions.- 4. Kinetic Equations for Electrochemical Reactions.- 4.1. Factors in the Kinetics of Organic Electrode Reactions.- 4.2. Electrode Potential, E, and the Rate Equations for Electron Transfer Reactions.- 4.3. Treatments for More Complex Electrochemical Reactions.- 4.4. Dependence of Rates of Organic Electrode Reactions on the Electrode Material.- 5. Reaction Yields in Relation to Coulombic Efficiency and Conditions of Electrolysis.- 5.1. Current Efficiencies and Coulombic Yields.- 5.2. Significance of Controlled Potential Electrolysis.- 5.3. Coulometry.- 5.4. Preparative Methods.- 6. Role of Adsorption in Electro-Organic Reactions.- 6.1. Factors in Adsorption and the Formulation of Isotherms.- 6.2. Methods for Investigation of Adsorption of Organic Substances.- 6.3. Reaction Order and Adsorption in Kinetics of Electro-Organic Processes.- 6.4. Adsorption and Solvation: Solvent Effects in Organic Adsorption.- 6.5. Adsorption and the Electrode Metal.- 7. Organic Reactions under Diffusion Control at Electrodes.- 7.1. Introduction.- 7.2. Diffusion-Limited Electrode Processes at Solid Metals.- 7.3. Polarographic Conditions: Diffusion at Mercury Drops.- 7.4. The Mass Transport Problems in Preparative Electro-Organic Chemistry and Cell Design.- 8. Polarographic Methods and Related Techniques for the Study of Electro- Organic Reactions.- 8.1. Introduction.- 8.2. Fundamental Aspects of Polarography.- 8.3. Criteria of Polarographic Reversibility.- 8.4. What Information May Be Obtained from Classical Polarography?.- 8.5. Other Electrochemical Techniques Related to Polarography.- 8.6. Polarographic Studies of pH Effects and Reaction Mechanisms.- 9. Steric Aspects of Electro-Organic Reaction Mechanisms.- 9.1. Adsorption of Intermediates and Stereochemical Effects.- 9.2. Alkyl Halide Reduction and Stereochemical Effects.- 10. Isotope Effects in Mechanistic Studies.- 11. Electrocatalytic Types of Reaction with Small Organic Molecules.- 12. Anodic Reactions with Thick-Film Oxides on Electrodes.- 12.1. Reactions at Bulk-Type Base Metal Oxide Films.- 12.2. Reactions of Organic Substances at High Anodic Potentials on Thick Noble Metal Oxide Films.- 13. Discussion of Some Reactions and Their Mechanisms That Have Possibilities for Commercial Development.- 13.1. Oxidation of Aliphatic Hydrocarbons.- 13.2. Anodic Substitution Reactions with Aromatic Hydrocarbons..- 13.3. Electroreduction Processes.- 13.4. Coupling Reactions.- 13.5. Electroinitiated Polymerizations.- 14. Economic and Commercial Aspects of Organic Electrode Processes.- 15. Conclusions Regarding Industrial Applications.- References.