Computational Approaches to Energy Materials (eBook, ePUB)
Redaktion: Catlow, Richard; Walsh, Aron; Sokol, Alexey
Alle Infos zum eBook verschenken
Computational Approaches to Energy Materials (eBook, ePUB)
Redaktion: Catlow, Richard; Walsh, Aron; Sokol, Alexey
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process. Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the development and…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.68MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 3. April 2013
- Englisch
- ISBN-13: 9781118551448
- Artikelnr.: 38260113
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 3. April 2013
- Englisch
- ISBN-13: 9781118551448
- Artikelnr.: 38260113
164 6.3.2.2 Oxygen Vacancy Migration in (Ba,Sr)(Co,Fe)O3
167 6.3.2.3 Disorder and Cation Rearrangement in (Ba,Sr)(Co,Fe)O3
170 6.3.3 Defects in (La,Sr)(Co,Fe)O3
173 6.4 Ion Transport in Electrolytes: Recent Studies 175 6.5 Reactions at SOFC Anodes 176 6.6 Conclusions 177 Acknowledgments 178 References 178 7 Energy Conversion: Heterogeneous Catalysis 187 Rutger A. van Santen, Evgeny A. Pidko, and Emiel J.M. Hensen 7.1 Introduction 187 7.1.1 Particle Size Dependence of Catalytic Reactivity 191 7.1.2 Activity and Selectivity as a Function of the Metal Type 192 7.1.3 Reactivity as a Function of State of the Surface 193 7.1.4 Mechanism of Acid Catalysis: Single Site versus Dual Site 193 7.2 Basic Concepts of Heterogeneous Catalysis 195 7.3 Surface Sensitivity in CH Activation 198 7.3.1 Homolytic Activation of CH Bonds 198 7.3.2 Heterolytic Activation of CH Bonds 203 7.3.2.1 Brønsted Acid Catalysis 204 7.3.2.2 Lewis Acid Catalysis 206 7.4 Surface Sensitivity for the C
C Bond Formation 209 7.4.1 Transition Metal Catalyzed FT Reaction 209 7.4.2 C
C Bond Formation Catalyzed by Zeolitic Brønsted Acids 213 7.5 Structure and Surface Composition Sensitivity: Oxygen Insertion versus CH Bond Cleavage 217 7.5.1 Silver-Catalyzed Ethylene Epoxidation 217 7.5.2 Benzene Oxidation by Iron-Modified Zeolite 221 7.6 Conclusion 223 References 224 8 Energy Conversion: Solid-State Lighting 231 E. Kioupakis, P. Rinke, A. Janotti, Q. Yan, and C.G. Van de Walle 8.1 Introduction to Solid-State Lighting 231 8.2 Structure and Electronic Properties of Nitride Materials 234 8.2.1 Density Functional Theory and Ground-State Properties 234 8.2.2 Electronic Excitations: GW and Exact Exchange 236 8.2.3 Electronic Excitations: Hybrid Functionals 240 8.2.4 Band-gap Bowing and Band Alignments 240 8.2.5 Strain and Deformation Potentials 241 8.3 Defects in Nitride Materials 243 8.3.1 Methodology 244 8.3.2 Example: C in GaN 246 8.4 Auger Recombination and Efficiency Droop Problem of Nitride LEDs 248 8.4.1 Efficiency Droop 248 8.4.2 Auger Recombination 249 8.4.3 Computational Methodology 251 8.4.4 Results 252 8.5 Summary 254 Acknowledgments 255 References 255 9 Toward the Nanoscale 261 Phuti E. Ngoepe, Rapela R. Maphanga, and Dean C. Sayle 9.1 Introduction 261 9.2 Review of Simulation Methods 263 9.2.1 Established Computational Methods 263 9.2.2 Evolutionary Methods 263 9.2.2.1 GM Methods 263 9.2.2.2 Amorphization and Recrystallization 264 9.3 Applications 266 9.3.1 Nanoclusters 266 9.3.1.1 ZnO 266 9.3.1.2 ZnS 268 9.3.1.3 MnO2 269 9.3.1.4 TiO2 271 9.3.2 Nanoarchitectures 272 9.3.2.1 MnO2 Nanoparticle (Nucleation and Crystallization) 272 9.3.2.2 MnO2 Bulk 275 9.3.2.3 MnO2 Nanoporous 278 9.3.2.4 TiO2 Nanoporous 284 9.3.2.5 ZnS and ZnO Nanoporous 286 9.4 Summary and Conclusion 289 Acknowledgments 290 References 290 Further Reading 295 Index 297
164 6.3.2.2 Oxygen Vacancy Migration in (Ba,Sr)(Co,Fe)O3
167 6.3.2.3 Disorder and Cation Rearrangement in (Ba,Sr)(Co,Fe)O3
170 6.3.3 Defects in (La,Sr)(Co,Fe)O3
173 6.4 Ion Transport in Electrolytes: Recent Studies 175 6.5 Reactions at SOFC Anodes 176 6.6 Conclusions 177 Acknowledgments 178 References 178 7 Energy Conversion: Heterogeneous Catalysis 187 Rutger A. van Santen, Evgeny A. Pidko, and Emiel J.M. Hensen 7.1 Introduction 187 7.1.1 Particle Size Dependence of Catalytic Reactivity 191 7.1.2 Activity and Selectivity as a Function of the Metal Type 192 7.1.3 Reactivity as a Function of State of the Surface 193 7.1.4 Mechanism of Acid Catalysis: Single Site versus Dual Site 193 7.2 Basic Concepts of Heterogeneous Catalysis 195 7.3 Surface Sensitivity in CH Activation 198 7.3.1 Homolytic Activation of CH Bonds 198 7.3.2 Heterolytic Activation of CH Bonds 203 7.3.2.1 Brønsted Acid Catalysis 204 7.3.2.2 Lewis Acid Catalysis 206 7.4 Surface Sensitivity for the C
C Bond Formation 209 7.4.1 Transition Metal Catalyzed FT Reaction 209 7.4.2 C
C Bond Formation Catalyzed by Zeolitic Brønsted Acids 213 7.5 Structure and Surface Composition Sensitivity: Oxygen Insertion versus CH Bond Cleavage 217 7.5.1 Silver-Catalyzed Ethylene Epoxidation 217 7.5.2 Benzene Oxidation by Iron-Modified Zeolite 221 7.6 Conclusion 223 References 224 8 Energy Conversion: Solid-State Lighting 231 E. Kioupakis, P. Rinke, A. Janotti, Q. Yan, and C.G. Van de Walle 8.1 Introduction to Solid-State Lighting 231 8.2 Structure and Electronic Properties of Nitride Materials 234 8.2.1 Density Functional Theory and Ground-State Properties 234 8.2.2 Electronic Excitations: GW and Exact Exchange 236 8.2.3 Electronic Excitations: Hybrid Functionals 240 8.2.4 Band-gap Bowing and Band Alignments 240 8.2.5 Strain and Deformation Potentials 241 8.3 Defects in Nitride Materials 243 8.3.1 Methodology 244 8.3.2 Example: C in GaN 246 8.4 Auger Recombination and Efficiency Droop Problem of Nitride LEDs 248 8.4.1 Efficiency Droop 248 8.4.2 Auger Recombination 249 8.4.3 Computational Methodology 251 8.4.4 Results 252 8.5 Summary 254 Acknowledgments 255 References 255 9 Toward the Nanoscale 261 Phuti E. Ngoepe, Rapela R. Maphanga, and Dean C. Sayle 9.1 Introduction 261 9.2 Review of Simulation Methods 263 9.2.1 Established Computational Methods 263 9.2.2 Evolutionary Methods 263 9.2.2.1 GM Methods 263 9.2.2.2 Amorphization and Recrystallization 264 9.3 Applications 266 9.3.1 Nanoclusters 266 9.3.1.1 ZnO 266 9.3.1.2 ZnS 268 9.3.1.3 MnO2 269 9.3.1.4 TiO2 271 9.3.2 Nanoarchitectures 272 9.3.2.1 MnO2 Nanoparticle (Nucleation and Crystallization) 272 9.3.2.2 MnO2 Bulk 275 9.3.2.3 MnO2 Nanoporous 278 9.3.2.4 TiO2 Nanoporous 284 9.3.2.5 ZnS and ZnO Nanoporous 286 9.4 Summary and Conclusion 289 Acknowledgments 290 References 290 Further Reading 295 Index 297