Computational Intelligence Methods for Bioinformatics and Biostatistics (eBook, PDF)
17th International Meeting, CIBB 2021, Virtual Event, November 15-17, 2021, Revised Selected Papers
Redaktion: Chicco, Davide; Cazzaniga, Paolo; Avesani, Simone; Bernasconi, Anna; Vettoretti, Martina; Longato, Enrico; Tavazzi, Erica; Facchiano, Angelo
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
Computational Intelligence Methods for Bioinformatics and Biostatistics (eBook, PDF)
17th International Meeting, CIBB 2021, Virtual Event, November 15-17, 2021, Revised Selected Papers
Redaktion: Chicco, Davide; Cazzaniga, Paolo; Avesani, Simone; Bernasconi, Anna; Vettoretti, Martina; Longato, Enrico; Tavazzi, Erica; Facchiano, Angelo
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes revised selected papers from the 17th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2021, which was held virtually during November 15-17, 2021.
The 19 papers included in these proceedings were carefully reviewed and selected from 26 submissions, and they focus on bioinformatics, computational biology, health informatics, cheminformatics, biotechnology, biostatistics, and biomedical imaging.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.81MB
Andere Kunden interessierten sich auch für
- Biomedical and Computational Biology (eBook, PDF)73,95 €
- Intelligent Computing Methodologies (eBook, PDF)73,95 €
- Bioinformatics and Biomedical Engineering (eBook, PDF)73,95 €
- Intelligent Computing Theories and Application (eBook, PDF)73,95 €
- Bioinformatics and Biomedical Engineering (eBook, PDF)89,95 €
- Bioinformatics Research and Applications (eBook, PDF)61,95 €
- Advances in Computational Intelligence (eBook, PDF)65,95 €
-
-
-
This book constitutes revised selected papers from the 17th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2021, which was held virtually during November 15-17, 2021.
The 19 papers included in these proceedings were carefully reviewed and selected from 26 submissions, and they focus on bioinformatics, computational biology, health informatics, cheminformatics, biotechnology, biostatistics, and biomedical imaging.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 253
- Erscheinungstermin: 25. November 2022
- Englisch
- ISBN-13: 9783031208379
- Artikelnr.: 66680066
- Verlag: Springer International Publishing
- Seitenzahl: 253
- Erscheinungstermin: 25. November 2022
- Englisch
- ISBN-13: 9783031208379
- Artikelnr.: 66680066
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Chemical Neural Networks and Synthetic Cell Biotechnology: Preludes to Chemical AI.- Development of Bayesian network for multiple sclerosis risk factor interaction analysis.- Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram.- The first in-silico model of leg movement activity during sleep.- Transfer learning and magnetic resonance imaging techniques for deep neural network-based diagnosis of early cognitive decline and dementia.- Improving bacterial sRNA identification by combining genomic context and sequence-derived features.- High-dimensional multi-trait GWAS by reverse prediction of genotypes using machine learning methods.- A Non-Negative Matrix Tri-Factorization based Method for Predicting Antitumor Drug Sensitivity.- A Rule-based Approach for Generating Synthetic Biological Pathways.- Machine Learning Classifiers based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer's Disease using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data.- Text Mining Enhancements for Image Recognition of Gene Names and Gene Relations.- Sentence Classification to Detect Tables for Helping Extraction of Regulatory Interactions in Bacteria.- RF-Isolation: a Novel Representation of Structural Connectivity Networks for Multiple Sclerosis Classification.- Summarizing Global SARS-CoV-2 Geographical Spread by Phylogenetic Multitype Branching Models.- Explainable AI Models for COVID-19 Diagnosis using CT-Scan Images and Clinical Data.- The need of standardised metadata to encode causal relationships: Towards safer data-driven machine learning biological solutions.- Deep Recurrent Neural Networks for the Generation of Synthetic Coronavirus Spike Protein Sequences.- Recent Dimensionality Reduction Techniques for High-Dimensional COVID-19 Data.- Soft brain ageing indicators based on light-weight LeNet-like neural networks and localized 2D brain age biomarkers.
Chemical Neural Networks and Synthetic Cell Biotechnology: Preludes to Chemical AI.- Development of Bayesian network for multiple sclerosis risk factor interaction analysis.- Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram.- The first in-silico model of leg movement activity during sleep.- Transfer learning and magnetic resonance imaging techniques for deep neural network-based diagnosis of early cognitive decline and dementia.- Improving bacterial sRNA identification by combining genomic context and sequence-derived features.- High-dimensional multi-trait GWAS by reverse prediction of genotypes using machine learning methods.- A Non-Negative Matrix Tri-Factorization based Method for Predicting Antitumor Drug Sensitivity.- A Rule-based Approach for Generating Synthetic Biological Pathways.- Machine Learning Classifiers based on Dimensionality Reduction Techniques for the Early Diagnosis of Alzheimer's Disease using Magnetic Resonance Imaging and Positron Emission Tomography Brain Data.- Text Mining Enhancements for Image Recognition of Gene Names and Gene Relations.- Sentence Classification to Detect Tables for Helping Extraction of Regulatory Interactions in Bacteria.- RF-Isolation: a Novel Representation of Structural Connectivity Networks for Multiple Sclerosis Classification.- Summarizing Global SARS-CoV-2 Geographical Spread by Phylogenetic Multitype Branching Models.- Explainable AI Models for COVID-19 Diagnosis using CT-Scan Images and Clinical Data.- The need of standardised metadata to encode causal relationships: Towards safer data-driven machine learning biological solutions.- Deep Recurrent Neural Networks for the Generation of Synthetic Coronavirus Spike Protein Sequences.- Recent Dimensionality Reduction Techniques for High-Dimensional COVID-19 Data.- Soft brain ageing indicators based on light-weight LeNet-like neural networks and localized 2D brain age biomarkers.