Computational Intelligence Techniques for Trading and Investment (eBook, ePUB)
Redaktion: Dunis, Christian; Theofilatos, Konstantinos; Sermpinis, Georgios; Karathanasopoulos, Andreas; Likothanassis, Spiros
Alle Infos zum eBook verschenken
Computational Intelligence Techniques for Trading and Investment (eBook, ePUB)
Redaktion: Dunis, Christian; Theofilatos, Konstantinos; Sermpinis, Georgios; Karathanasopoulos, Andreas; Likothanassis, Spiros
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Computational intelligence, a sub-branch of artificial intelligence, is a field which draws on the natural world and adaptive mechanisms in order to study behaviour in changing complex environments. This book provides an interdisciplinary view of current technological advances and challenges concerning the application of computational intelligence techniques to financial time-series forecasting, trading and investment.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.05MB
- Computational Intelligence Techniques for Trading and Investment (eBook, PDF)42,95 €
- Paul Dylan-EnnisAbsolute Essentials of Ethereum (eBook, ePUB)21,95 €
- Artificial Intelligence in Forecasting (eBook, ePUB)52,95 €
- Intelligent Analytics for Industry 4.0 Applications (eBook, ePUB)52,95 €
- V. PriyaComputational Techniques for Text Summarization based on Cognitive Intelligence (eBook, ePUB)52,95 €
- Computational Intelligence Applications in Cyber Security (eBook, ePUB)52,95 €
- Chandrasekar VuppalapatiDemocratization of Artificial Intelligence for the Future of Humanity (eBook, ePUB)75,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 238
- Erscheinungstermin: 26. März 2014
- Englisch
- ISBN-13: 9781136195105
- Artikelnr.: 40824451
- Verlag: Taylor & Francis
- Seitenzahl: 238
- Erscheinungstermin: 26. März 2014
- Englisch
- ISBN-13: 9781136195105
- Artikelnr.: 40824451
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
perspectives and open problems K. Theofilatos, E. Georgopoulos, S.
Likothanassis and S. Mavroudi 2. Forecasting and trading strategies: A
survey C. Stasinakis and G. Sermpinis Part II: Trading and Investments with
Traditional Computational Intelligence Techniques 3. Hidden Markov Models:
Financial modelling and applications S. Mitra 4. Modelling and Trading
Financial Time-Series Using Kalman Filters and ARMA Modelling C.
Dimitrakopoulos, A. Karathanasopoulos, G. Sermpinis and S. Likothanassis
Part III: Trading and Investments with Artificial Neural Networks 5.
Modelling and Trading the Corn/Ethanol Crush Spread with Neural Networks
C. Dunis, J. Laws, P. Middleton and A. Karathanasopoulos 6. Trading
Decision Support with Historically Consistent Neural Networks J. Von
Mettenheim Part IV: Trading and Investments with Hybrid Evolutionary
Methodologies 7. Modelling and Trading Financial Time-Series Using Adaptive
Evolutionary Neural Networks K. Theofilatos, T. Amorgianiotis, A.
Karathanasopoulos, G. Sermpinis and S. Likothanassis 8. Portfolio
Construction Using Argumentation and Hybrid Evolutionary Forecasting
Algorithms N. Spanoudakis, K. Pendaraki and G. Beligiannis Part V: Trading
and Investments with Advanced Computational Intelligence Modelling
Techniques 9. Forecasting DAX30 Using Support Vector Machine and VDAX R.
Rosillo, J. Giner and D. de la Fuente 10. Ensemble Learning of
High-Dimensional Stock Market Data M. Maragoudakis and D. Serpanos
perspectives and open problems K. Theofilatos, E. Georgopoulos, S.
Likothanassis and S. Mavroudi 2. Forecasting and trading strategies: A
survey C. Stasinakis and G. Sermpinis Part II: Trading and Investments with
Traditional Computational Intelligence Techniques 3. Hidden Markov Models:
Financial modelling and applications S. Mitra 4. Modelling and Trading
Financial Time-Series Using Kalman Filters and ARMA Modelling C.
Dimitrakopoulos, A. Karathanasopoulos, G. Sermpinis and S. Likothanassis
Part III: Trading and Investments with Artificial Neural Networks 5.
Modelling and Trading the Corn/Ethanol Crush Spread with Neural Networks
C. Dunis, J. Laws, P. Middleton and A. Karathanasopoulos 6. Trading
Decision Support with Historically Consistent Neural Networks J. Von
Mettenheim Part IV: Trading and Investments with Hybrid Evolutionary
Methodologies 7. Modelling and Trading Financial Time-Series Using Adaptive
Evolutionary Neural Networks K. Theofilatos, T. Amorgianiotis, A.
Karathanasopoulos, G. Sermpinis and S. Likothanassis 8. Portfolio
Construction Using Argumentation and Hybrid Evolutionary Forecasting
Algorithms N. Spanoudakis, K. Pendaraki and G. Beligiannis Part V: Trading
and Investments with Advanced Computational Intelligence Modelling
Techniques 9. Forecasting DAX30 Using Support Vector Machine and VDAX R.
Rosillo, J. Giner and D. de la Fuente 10. Ensemble Learning of
High-Dimensional Stock Market Data M. Maragoudakis and D. Serpanos