Xudong Chen
Computational Methods for Electromagnetic Inverse Scattering (eBook, PDF)
123,99 €
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
123,99 €
Als Download kaufen
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Xudong Chen
Computational Methods for Electromagnetic Inverse Scattering (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems * Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications * Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods * Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems * Written by a leading expert in the field…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.72MB
A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems * Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications * Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods * Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems * Written by a leading expert in the field
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Erscheinungstermin: 7. März 2018
- Englisch
- ISBN-13: 9781119312017
- Artikelnr.: 53058173
- Verlag: John Wiley & Sons
- Erscheinungstermin: 7. März 2018
- Englisch
- ISBN-13: 9781119312017
- Artikelnr.: 53058173
Xudong Chen, received the B.S. and M.S. degrees in electrical engineering from Zhejiang University, Hangzhou, China, in 1999 and 2001, respectively, and the Ph.D. degree from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2005. Since then he joined the Department of Electrical and Computer Engineering, National University of Singapore, Singapore, and he is currently an Associate Professor. His research interests include mainly electromagnetic inverse problems. He has published more than 120 peer-reviewed journal papers on inverse scattering problems, material parameter retrieval, and optical encryption. The total citation of his papers is about 2,500 according to ISI Web of Science till Dec 2015. He visited the University of Paris-SUD 11 in May-June 2010 as an invited visiting Associate Professor. He was the recipient of the Young Scientist Award by the Union Radio-Scientifique Internationale (URSI) in 2010 and Engineering Young Researcher Award by FOE, National University of Singapore in 2015. He is currently an Associate Editor of the IEEE Transactions on Microwave Theory and Techniques.
1 Introduction 1
1.1 Introduction to electromagnetic inverse scattering problems 1
1.2 Forward scattering problems 2
1.3 Properties of inverse scattering problems 3
1.4 Scope of the book 6
2 Fundamentals of electromagnetic wave theory 13
2.1 Maxwell?s equations 13
2.1.1 Representations in differential form 13
2.1.2 Time harmonic forms 14
2.1.3 Boundary conditions 15
2.1.4 Constitutive relations 16
2.2 General description of a scattering problem 16
2.3 Duality principle 18
2.4 Radiation in free space 18
2.5 Volume integral equations for dielectric scatterers 20
2.6 Surface integral equations for perfectly conducting scatterers 21
2.7 Two-dimensional scattering problems 22
2.8 Scattering by small scatterers 24
2.8.1 Three-dimensional case 24
2.8.2 Two-dimensional case 27
2.8.3 Scattering by a collection of small scatterers 28
2.8.4 Degrees of freedom 28
2.9 Scattering by extended scatterers 29
2.9.1 Nonmagnetic dielectric scatterers 29
2.9.2 Perfectly electrically conducting scatterers 31
2.10 Far-field approximation 31
2.11 Reciprocity 33
2.12 Huygens? principle and extinction theorem 35
3 Time reversal imaging 41
3.1 Time reversal imaging for active sources 41
3.1.1 Explanation based on geometrical optics 41
3.1.2 Implementation steps 42
3.1.3 Fundamental theory 44
3.1.4 Analysis of resolution 48
3.1.5 Vectorial wave 49
3.2 Time reversal imaging for passive sources 51
3.2.1 Imaging by iterative time-reversal process 53
3.2.2 Imaging by the DORT method 54
3.2.3 Numerical simulations 55
3.3 Discussions 61
4 Inverse scattering problems of small scatterers 67
4.1 Forward problem: Foldy-Lax equation 68
4.2 Uniqueness theorem for inverse problem 69
4.2.1 Inverse source problem 70
4.2.2 Inverse scattering problem 71
4.3 Numerical methods 73
4.3.1 Multiple signal classification imaging 73
4.3.2 Noniterative retrieval of scattering strength 76
4.4 Inversion of vector wave equation 78
4.4.1 Forward problem 79
4.4.2 Multiple signal classification imaging 81
4.4.3 Noniterative retrieval of scattering strength tensor 88
4.4.4 Subspace imaging algorithm with enhanced resolution 90
4.5 Discussions 95
5 Linear sampling method 101
5.1 Outline of linear sampling method 102
5.2 Physical interpretation 104
5.2.1 Source distribution 104
5.2.2 Multipole radiation 106
5.3 Multipole-based linear sampling method 107
5.3.1 Description of the algorithm 107
5.3.2 Choice of the number of multipoles 108
5.3.3 Comparison with Tikhonov regularization 110
5.3.4 Numerical examples 112
5.4 Factorization method 113
5.5 Discussions 116
6 Reconstructing dielectric scatterers 119
6.1 Introduction 120
6.1.1 Uniqueness, stability, and nonlinearity 120
6.1.2 Formulation of the forward problem 122
6.1.3 Optimization approach to inverse problem 123
6.2 Noniterative inversion methods 125
6.2.1 Born approximation inversion method 125
6.2.2 Rytov approximation inversion method 126
6.2.3 Extended Born approximation inversion method 127
6.2.4 Back-propagation scheme 128
6.2.5 Numerical examples 129
&nbs
1.1 Introduction to electromagnetic inverse scattering problems 1
1.2 Forward scattering problems 2
1.3 Properties of inverse scattering problems 3
1.4 Scope of the book 6
2 Fundamentals of electromagnetic wave theory 13
2.1 Maxwell?s equations 13
2.1.1 Representations in differential form 13
2.1.2 Time harmonic forms 14
2.1.3 Boundary conditions 15
2.1.4 Constitutive relations 16
2.2 General description of a scattering problem 16
2.3 Duality principle 18
2.4 Radiation in free space 18
2.5 Volume integral equations for dielectric scatterers 20
2.6 Surface integral equations for perfectly conducting scatterers 21
2.7 Two-dimensional scattering problems 22
2.8 Scattering by small scatterers 24
2.8.1 Three-dimensional case 24
2.8.2 Two-dimensional case 27
2.8.3 Scattering by a collection of small scatterers 28
2.8.4 Degrees of freedom 28
2.9 Scattering by extended scatterers 29
2.9.1 Nonmagnetic dielectric scatterers 29
2.9.2 Perfectly electrically conducting scatterers 31
2.10 Far-field approximation 31
2.11 Reciprocity 33
2.12 Huygens? principle and extinction theorem 35
3 Time reversal imaging 41
3.1 Time reversal imaging for active sources 41
3.1.1 Explanation based on geometrical optics 41
3.1.2 Implementation steps 42
3.1.3 Fundamental theory 44
3.1.4 Analysis of resolution 48
3.1.5 Vectorial wave 49
3.2 Time reversal imaging for passive sources 51
3.2.1 Imaging by iterative time-reversal process 53
3.2.2 Imaging by the DORT method 54
3.2.3 Numerical simulations 55
3.3 Discussions 61
4 Inverse scattering problems of small scatterers 67
4.1 Forward problem: Foldy-Lax equation 68
4.2 Uniqueness theorem for inverse problem 69
4.2.1 Inverse source problem 70
4.2.2 Inverse scattering problem 71
4.3 Numerical methods 73
4.3.1 Multiple signal classification imaging 73
4.3.2 Noniterative retrieval of scattering strength 76
4.4 Inversion of vector wave equation 78
4.4.1 Forward problem 79
4.4.2 Multiple signal classification imaging 81
4.4.3 Noniterative retrieval of scattering strength tensor 88
4.4.4 Subspace imaging algorithm with enhanced resolution 90
4.5 Discussions 95
5 Linear sampling method 101
5.1 Outline of linear sampling method 102
5.2 Physical interpretation 104
5.2.1 Source distribution 104
5.2.2 Multipole radiation 106
5.3 Multipole-based linear sampling method 107
5.3.1 Description of the algorithm 107
5.3.2 Choice of the number of multipoles 108
5.3.3 Comparison with Tikhonov regularization 110
5.3.4 Numerical examples 112
5.4 Factorization method 113
5.5 Discussions 116
6 Reconstructing dielectric scatterers 119
6.1 Introduction 120
6.1.1 Uniqueness, stability, and nonlinearity 120
6.1.2 Formulation of the forward problem 122
6.1.3 Optimization approach to inverse problem 123
6.2 Noniterative inversion methods 125
6.2.1 Born approximation inversion method 125
6.2.2 Rytov approximation inversion method 126
6.2.3 Extended Born approximation inversion method 127
6.2.4 Back-propagation scheme 128
6.2.5 Numerical examples 129
&nbs
1 Introduction 1
1.1 Introduction to electromagnetic inverse scattering problems 1
1.2 Forward scattering problems 2
1.3 Properties of inverse scattering problems 3
1.4 Scope of the book 6
2 Fundamentals of electromagnetic wave theory 13
2.1 Maxwell?s equations 13
2.1.1 Representations in differential form 13
2.1.2 Time harmonic forms 14
2.1.3 Boundary conditions 15
2.1.4 Constitutive relations 16
2.2 General description of a scattering problem 16
2.3 Duality principle 18
2.4 Radiation in free space 18
2.5 Volume integral equations for dielectric scatterers 20
2.6 Surface integral equations for perfectly conducting scatterers 21
2.7 Two-dimensional scattering problems 22
2.8 Scattering by small scatterers 24
2.8.1 Three-dimensional case 24
2.8.2 Two-dimensional case 27
2.8.3 Scattering by a collection of small scatterers 28
2.8.4 Degrees of freedom 28
2.9 Scattering by extended scatterers 29
2.9.1 Nonmagnetic dielectric scatterers 29
2.9.2 Perfectly electrically conducting scatterers 31
2.10 Far-field approximation 31
2.11 Reciprocity 33
2.12 Huygens? principle and extinction theorem 35
3 Time reversal imaging 41
3.1 Time reversal imaging for active sources 41
3.1.1 Explanation based on geometrical optics 41
3.1.2 Implementation steps 42
3.1.3 Fundamental theory 44
3.1.4 Analysis of resolution 48
3.1.5 Vectorial wave 49
3.2 Time reversal imaging for passive sources 51
3.2.1 Imaging by iterative time-reversal process 53
3.2.2 Imaging by the DORT method 54
3.2.3 Numerical simulations 55
3.3 Discussions 61
4 Inverse scattering problems of small scatterers 67
4.1 Forward problem: Foldy-Lax equation 68
4.2 Uniqueness theorem for inverse problem 69
4.2.1 Inverse source problem 70
4.2.2 Inverse scattering problem 71
4.3 Numerical methods 73
4.3.1 Multiple signal classification imaging 73
4.3.2 Noniterative retrieval of scattering strength 76
4.4 Inversion of vector wave equation 78
4.4.1 Forward problem 79
4.4.2 Multiple signal classification imaging 81
4.4.3 Noniterative retrieval of scattering strength tensor 88
4.4.4 Subspace imaging algorithm with enhanced resolution 90
4.5 Discussions 95
5 Linear sampling method 101
5.1 Outline of linear sampling method 102
5.2 Physical interpretation 104
5.2.1 Source distribution 104
5.2.2 Multipole radiation 106
5.3 Multipole-based linear sampling method 107
5.3.1 Description of the algorithm 107
5.3.2 Choice of the number of multipoles 108
5.3.3 Comparison with Tikhonov regularization 110
5.3.4 Numerical examples 112
5.4 Factorization method 113
5.5 Discussions 116
6 Reconstructing dielectric scatterers 119
6.1 Introduction 120
6.1.1 Uniqueness, stability, and nonlinearity 120
6.1.2 Formulation of the forward problem 122
6.1.3 Optimization approach to inverse problem 123
6.2 Noniterative inversion methods 125
6.2.1 Born approximation inversion method 125
6.2.2 Rytov approximation inversion method 126
6.2.3 Extended Born approximation inversion method 127
6.2.4 Back-propagation scheme 128
6.2.5 Numerical examples 129
&nbs
1.1 Introduction to electromagnetic inverse scattering problems 1
1.2 Forward scattering problems 2
1.3 Properties of inverse scattering problems 3
1.4 Scope of the book 6
2 Fundamentals of electromagnetic wave theory 13
2.1 Maxwell?s equations 13
2.1.1 Representations in differential form 13
2.1.2 Time harmonic forms 14
2.1.3 Boundary conditions 15
2.1.4 Constitutive relations 16
2.2 General description of a scattering problem 16
2.3 Duality principle 18
2.4 Radiation in free space 18
2.5 Volume integral equations for dielectric scatterers 20
2.6 Surface integral equations for perfectly conducting scatterers 21
2.7 Two-dimensional scattering problems 22
2.8 Scattering by small scatterers 24
2.8.1 Three-dimensional case 24
2.8.2 Two-dimensional case 27
2.8.3 Scattering by a collection of small scatterers 28
2.8.4 Degrees of freedom 28
2.9 Scattering by extended scatterers 29
2.9.1 Nonmagnetic dielectric scatterers 29
2.9.2 Perfectly electrically conducting scatterers 31
2.10 Far-field approximation 31
2.11 Reciprocity 33
2.12 Huygens? principle and extinction theorem 35
3 Time reversal imaging 41
3.1 Time reversal imaging for active sources 41
3.1.1 Explanation based on geometrical optics 41
3.1.2 Implementation steps 42
3.1.3 Fundamental theory 44
3.1.4 Analysis of resolution 48
3.1.5 Vectorial wave 49
3.2 Time reversal imaging for passive sources 51
3.2.1 Imaging by iterative time-reversal process 53
3.2.2 Imaging by the DORT method 54
3.2.3 Numerical simulations 55
3.3 Discussions 61
4 Inverse scattering problems of small scatterers 67
4.1 Forward problem: Foldy-Lax equation 68
4.2 Uniqueness theorem for inverse problem 69
4.2.1 Inverse source problem 70
4.2.2 Inverse scattering problem 71
4.3 Numerical methods 73
4.3.1 Multiple signal classification imaging 73
4.3.2 Noniterative retrieval of scattering strength 76
4.4 Inversion of vector wave equation 78
4.4.1 Forward problem 79
4.4.2 Multiple signal classification imaging 81
4.4.3 Noniterative retrieval of scattering strength tensor 88
4.4.4 Subspace imaging algorithm with enhanced resolution 90
4.5 Discussions 95
5 Linear sampling method 101
5.1 Outline of linear sampling method 102
5.2 Physical interpretation 104
5.2.1 Source distribution 104
5.2.2 Multipole radiation 106
5.3 Multipole-based linear sampling method 107
5.3.1 Description of the algorithm 107
5.3.2 Choice of the number of multipoles 108
5.3.3 Comparison with Tikhonov regularization 110
5.3.4 Numerical examples 112
5.4 Factorization method 113
5.5 Discussions 116
6 Reconstructing dielectric scatterers 119
6.1 Introduction 120
6.1.1 Uniqueness, stability, and nonlinearity 120
6.1.2 Formulation of the forward problem 122
6.1.3 Optimization approach to inverse problem 123
6.2 Noniterative inversion methods 125
6.2.1 Born approximation inversion method 125
6.2.2 Rytov approximation inversion method 126
6.2.3 Extended Born approximation inversion method 127
6.2.4 Back-propagation scheme 128
6.2.5 Numerical examples 129
&nbs