40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

This book constitutes the post-proceedings of the DIMACS/RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotype Inference held in Piscataway, NJ, USA, in November 2002.
The book presents ten revised full papers as well as abstracts of the remaining workshop papers. All relevant current issues in computational methods for SNP and haplotype analysis and their applications to disease associations are addressed.

Produktbeschreibung
This book constitutes the post-proceedings of the DIMACS/RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotype Inference held in Piscataway, NJ, USA, in November 2002.

The book presents ten revised full papers as well as abstracts of the remaining workshop papers. All relevant current issues in computational methods for SNP and haplotype analysis and their applications to disease associations are addressed.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Michael S. Waterman is a University Professor, a USC Associates Chair in Natural Sciences, and Professor of Biological Sciences, Computer Science, and Mathematics at the University of Southern California. A member of the National Academy of Sciences and the American Academy of Arts and Sciences, Professor Waterman is Founding Editor and Co-Editor in Chief of the Journal of Computational Biology. His research has focused on computational analysis of molecular sequence data. His best-known work is the co-development of the local alignment Smith-Waterman algorithm, which has become the foundational tool for database search methods. His interests have also encompassed physical mapping, as exemplified by the Lander-Waterman formulas, and genome sequence assembly using an Eulerian path method.