Computational Methods in Electromagnetic Compatibility (eBook, PDF)
Antenna Theory Approach Versus Transmission Line Models
Alle Infos zum eBook verschenken
Computational Methods in Electromagnetic Compatibility (eBook, PDF)
Antenna Theory Approach Versus Transmission Line Models
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Offers a comprehensive overview of the recent advances in the area of computational electromagnetics Computational Method in Electromagnetic Compatibility offers a review of the most recent advances in computational electromagnetics. The authors--noted experts in the field--examine similar problems by taking different approaches related to antenna theory models and transmission line methods. They discuss various solution methods related to boundary integral equation techniques and finite difference techniques. The topics covered are related to realistic antenna systems including antennas for…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 16.97MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 432
- Erscheinungstermin: 10. Mai 2018
- Englisch
- ISBN-13: 9781119337195
- Artikelnr.: 54081179
- Verlag: John Wiley & Sons
- Seitenzahl: 432
- Erscheinungstermin: 10. Mai 2018
- Englisch
- ISBN-13: 9781119337195
- Artikelnr.: 54081179
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Part I Electromagnetic Field Coupling to ThinWire Configurations of
Arbitrary Shape 1
1 Computational Electromagnetics - Introductory Aspects 3
1.1 The Character of Physical Models Representing Natural Phenomena 3
1.1.1 Scientific Method, a Definition, History, Development ... ? 3
1.1.2 Physical Model and the MathematicalMethod to Solve the Problem -The
Essence of Scientific Theories 4
1.1.3 Philosophical Aspects Behind Scientific Theories 7
1.1.4 On the Character of Physical Models 8
1.2 Maxwell's Equations 9
1.2.1 Original Form of Maxwell's Equations 9
1.2.2 Modern Form of Maxwell's Equations 10
1.2.3 From the Corner of Philosophy of Science 12
1.2.4 FDTD Solution of Maxwell's Equations 13
1.2.5 Computational Examples 16
1.3 The ElectromagneticWave Equations 19
1.4 Conservation Laws in the Electromagnetic Field 20
1.5 Density of Quantity of Movement in the Electromagnetic Field 22
1.6 Electromagnetic Potentials 25
1.7 Solution of theWave Equation and Radiation Arrow of Time 25
1.8 Complex Phasor Form of Equations in Electromagnetics 27
1.8.1 The Generalized Symmetric Form of Maxwell's Equations 27
1.8.2 Complex Phasor Form of ElectromagneticWave Equations 29
1.8.3 Poynting Theorem for Complex Phasors 29
References 31
2 Antenna Theory versus Transmission Line Approximation - General
Considerations 33
2.1 A Note on EMC ComputationalModels 33
2.1.1 Classification of EMC Models 34
2.1.2 Summary Remarks on EMC Modeling 34
2.2 Generalized Telegrapher's Equations for the Field Coupling to Finite
LengthWires 35
2.2.1 Frequency Domain Analysis for StraightWires above a Lossy Ground 36
2.2.1.1 Integral Equation for PECWire of Finite Length above a Lossy Ground
37
2.2.1.2 Integral Equation for a Lossy Conductor above a Lossy Ground 39
2.2.1.3 Generalized Telegraphers Equations for PECWires 39
2.2.1.4 Generalized Telegraphers Equations for Lossy Conductors 42
2.2.1.5 Numerical Solution of Integral Equations 43
2.2.1.6 Simulation Results 46
2.2.1.7 Simulation Results and Comparison with TLTheory 46
2.2.2 Frequency Domain Analysis for StraightWires Buried in a Lossy Ground
51
2.2.2.1 Integral Equation for Lossy Conductor Buried in a Lossy Ground 51
2.2.2.2 Generalized Telegraphers Equations for Buried LossyWires 54
2.2.2.3 Computational Examples 56
2.2.3 Time Domain Analysis for StraightWires above a Lossy Ground 61
2.2.3.1 Space-Time Integro-Differential Equation for PECWire above a Lossy
Ground 61
2.2.3.2 Space-Time Integro-Differential Equation for Lossy Conductors 65
2.2.3.3 Generalized Telegraphers Equations for PECWires 66
2.2.3.4 Generalized Telegrapher's Equations for Lossy Conductors 70
2.2.4 Time Domain Analysis for StraightWires Buried in a Lossy Ground 74
2.2.4.1 Space-Time Integro-Differential Equation for PECWire below a Lossy
Ground 74
2.2.4.2 Space-Time Integro-Differential Equation for Lossy Conductors 79
2.2.4.3 Generalized Telegrapher's Equations for BuriedWires 80
2.2.4.4 Computational Results: BuriedWire Scatterer 82
2.2.4.5 Computational Results: Horizontal Grounding Electrode 84
2.3 Single HorizontalWire in the Presence of a Lossy Half-Space: Comparison
of Analytical Solution, Numerical Solution, and Transmission Line
Approximation 86
2.3.1 Wire above a Perfect Ground 88
2.3.2 Wire above an Imperfect Ground 89
2.3.3 Wire Buried in a Lossy Ground 89
2.3.4 Analytical Solution 90
2.3.5 Boundary Element Procedure 92
2.3.6 The Transmission Line Model 93
2.3.7 Modified Transmission Line Model 94
2.3.8 Computational Examples 95
2.3.8.1 Wire above a PEC Ground 95
2.3.8.2 Wire above a Lossy Ground 95
2.3.8.3 Wire Buried in a Lossy Ground 103
2.3.9 Field Transmitted in a Lower Lossy Half-Space 103
2.3.10 Numerical Results 110
2.4 Single VerticalWire in the Presence of a Lossy Half-Space: Comparison
of Analytical Solution, Numerical Solution, and Transmission Line
Approximation 114
2.4.1 Numerical Solution 117
2.4.2 Analytical Solution 119
2.4.3 Computational Examples 121
2.4.3.1 Transmitting Antenna 122
2.4.3.2 Receiving Antenna 122
2.5 Magnetic Current Loop Excitation of ThinWires 132
2.5.1 Delta Gap and Magnetic Frill 134
2.5.2 Magnetic Current Loop 135
2.5.3 Numerical Solution 136
2.5.4 Numerical Results 139
References 146
3 Electromagnetic Field Coupling to OverheadWires 153
3.1 Frequency Domain Models and Methods 154
3.1.1 Antenna Theory Approach: Set of Coupled Pocklington's Equations 154
3.1.2 Numerical Solution 160
3.1.3 Transmission Line Approximation: Telegrapher's Equations in the
Frequency Domain 162
3.1.4 Computational Examples 162
3.2 Time Domain Models and Methods 167
3.2.1 The Antenna Theory Model 167
3.2.2 The Numerical Solution 175
3.2.3 The Transmission Line Model 181
3.2.4 The Solution of Transmission Line Equations via FDTD 182
3.2.5 Numerical Results 184
3.3 Applications to Antenna Systems 187
3.3.1 Helix Antennas 187
3.3.2 Log-Periodic Dipole Arrays 190
3.3.3 GPR Dipole Antennas 198
References 202
4 Electromagnetic Field Coupling to BuriedWires 205
4.1 Frequency Domain Modeling 205
4.1.1 Antenna Theory Approach: Set of Coupled Pocklington's Equations for
ArbitraryWire Configurations 206
4.1.2 Antenna Theory Approach: Numerical Solution 210
4.1.3 Transmission Line Approximation: 212
4.1.4 Computational Examples 213
4.2 Time Domain Modeling 216
4.2.1 Antenna Theory Approach 216
4.2.2 Transmission Line Model 219
4.2.3 Computational Examples 223
References 223
5 Lightning Electromagnetics 225
5.1 AntennaModel of Lightning Channel 225
5.1.1 Integral Equation Formulation 226
5.1.2 Computational Examples 228
5.2 Vertical AntennaModel of a Lightning Rod 230
5.2.1 Integral Equation Formulation 234
5.2.2 Computational Examples 236
5.3 AntennaModel of aWind Turbine Exposed to Lightning Strike 237
5.3.1 Integral Equation Formulation for Multiple OverheadWires 240
5.3.2 Numerical Solution of Integral Equation Set for Overhead Wires 241
5.3.3 Computational Example: Transient Response of aWT Lightning Strike 242
References 247
6 Transient Analysis of Grounding Systems 253
6.1 Frequency Domain Analysis of Horizontal Grounding Electrode 254
6.1.1 Integral Equation Formulation/Reflection Coefficient Approach 254
6.1.2 Numerical Solution 257
6.1.3 Integral Equation Formulation/Sommerfeld Integral Approach 258
6.1.4 Analytical Solution 260
6.1.5 Modified Transmission Line Method (TLM) Approach 261
6.1.6 Computational Examples 261
6.1.7 Application of Magnetic Current Loop (MCL) Source model to Horizontal
Grounding Electrode 284
6.2 Frequency Domain Analysis of Vertical Grounding Electrode 288
6.2.1 Integral Equation Formulation/Reflection Coefficient Approach 288
6.2.2 Numerical Solution 290
6.2.3 Analytical Solution 291
6.2.4 Examples 292
6.3 Frequency Domain Analysis of Complex Grounding Systems 297
6.3.1 Antenna Theory Approach: Set of Homogeneous Pocklington's
Integro-Differential Equations for Grounding Systems 298
6.3.2 Antenna Theory Approach: Numerical Solution 300
6.3.3 Modified Transmission Line Method Approach 301
6.3.4 Finite Difference Solution of the Potential Differential Equation for
Transient Induced Voltage 301
6.3.5 Computational Examples: Grounding Grids and Rings 304
6.3.6 Computational Examples: Grounding Systems forWTs 311
6.4 Time Domain Analysis of Horizontal Grounding Electrodes 320
6.4.1 Homogeneous Integral Equation Formulation in the Time Domain 321
6.4.2 Numerical Solution Procedure for Pocklington's Equation 322
6.4.3 Numerical Results for Grounding Electrode 323
6.4.4 Analytical Solution of Pocklington's Equation 323
6.4.5 Transmission Line Model 324
6.4.6 FDTD Solution of Telegrapher's Equations 325
6.4.7 The Leakage Current 326
6.4.8 Computational Examples for the Horizontal Grounding Electrode 328
References 331
Part II Advanced Models in Bioelectromagnetics 337
7 Human Exposure to Electromagnetic Fields - General Aspects 339
7.1 Dosimetry 340
7.1.1 Low Frequency Exposures 341
7.1.2 High Frequency Exposures 342
7.2 Coupling Mechanisms 342
7.2.1 Coupling to LF Electric Fields 343
7.2.2 Coupling to LF Magnetic Fields 343
7.2.3 Absorption of Energy from Electromagnetic Radiation 343
7.2.4 Indirect Coupling Mechanisms 344
7.3 Biological Effects 344
7.3.1 Effects of ELF Fields 345
7.3.2 Effects of HF Radiation 345
7.4 Safety Guidelines and Exposure Limits 348
7.5 Some Remarks 351
References 351
8 Modeling of Human Exposure to Static and Low Frequency Fields 353
8.1 Exposure to Static Fields 354
8.1.1 Finite Element Solution 356
8.1.2 Boundary Element Solution 357
8.1.3 Numerical Results 360
8.2 Exposure to Low Frequency (LF) Fields 361
8.2.1 Numerical Results 362
References 363
9 Modeling of Human Exposure to High Frequency (HF) Electromagnetic Fields
365
9.1 Internal Electromagnetic Field DosimetryMethods 366
9.1.1 Solution by the Hybrid Finite Element/Boundary Element Approach 366
9.1.2 Numerical Results for the Human Eye Exposure 368
9.1.3 Solution by the Method of Moments 372
9.1.4 Computational Example for the Brain Exposure 380
9.2 Thermal Dosimetry Procedures 381
9.2.1 Finite Element Solution of Bio-Heat Transfer Equation 381
9.2.2 Numerical Results 382
References 383
10 Biomedical Applications of Electromagnetic Fields 387
10.1 Modeling of Induced Fields due to Transcranial Magnetic Stimulation
(TMS) Treatment 388
10.1.1 Numerical Results 391
10.2 Modeling of Nerve Fiber Excitation 392
10.2.1 Passive Nerve Fiber 396
10.2.2 Numerical Results for Passive Nerve Fiber 397
10.2.3 Active Nerve Fiber 397
10.2.4 Numerical Results for Active Nerve Fiber 401
References 403
Index 407
Part I Electromagnetic Field Coupling to ThinWire Configurations of
Arbitrary Shape 1
1 Computational Electromagnetics - Introductory Aspects 3
1.1 The Character of Physical Models Representing Natural Phenomena 3
1.1.1 Scientific Method, a Definition, History, Development ... ? 3
1.1.2 Physical Model and the MathematicalMethod to Solve the Problem -The
Essence of Scientific Theories 4
1.1.3 Philosophical Aspects Behind Scientific Theories 7
1.1.4 On the Character of Physical Models 8
1.2 Maxwell's Equations 9
1.2.1 Original Form of Maxwell's Equations 9
1.2.2 Modern Form of Maxwell's Equations 10
1.2.3 From the Corner of Philosophy of Science 12
1.2.4 FDTD Solution of Maxwell's Equations 13
1.2.5 Computational Examples 16
1.3 The ElectromagneticWave Equations 19
1.4 Conservation Laws in the Electromagnetic Field 20
1.5 Density of Quantity of Movement in the Electromagnetic Field 22
1.6 Electromagnetic Potentials 25
1.7 Solution of theWave Equation and Radiation Arrow of Time 25
1.8 Complex Phasor Form of Equations in Electromagnetics 27
1.8.1 The Generalized Symmetric Form of Maxwell's Equations 27
1.8.2 Complex Phasor Form of ElectromagneticWave Equations 29
1.8.3 Poynting Theorem for Complex Phasors 29
References 31
2 Antenna Theory versus Transmission Line Approximation - General
Considerations 33
2.1 A Note on EMC ComputationalModels 33
2.1.1 Classification of EMC Models 34
2.1.2 Summary Remarks on EMC Modeling 34
2.2 Generalized Telegrapher's Equations for the Field Coupling to Finite
LengthWires 35
2.2.1 Frequency Domain Analysis for StraightWires above a Lossy Ground 36
2.2.1.1 Integral Equation for PECWire of Finite Length above a Lossy Ground
37
2.2.1.2 Integral Equation for a Lossy Conductor above a Lossy Ground 39
2.2.1.3 Generalized Telegraphers Equations for PECWires 39
2.2.1.4 Generalized Telegraphers Equations for Lossy Conductors 42
2.2.1.5 Numerical Solution of Integral Equations 43
2.2.1.6 Simulation Results 46
2.2.1.7 Simulation Results and Comparison with TLTheory 46
2.2.2 Frequency Domain Analysis for StraightWires Buried in a Lossy Ground
51
2.2.2.1 Integral Equation for Lossy Conductor Buried in a Lossy Ground 51
2.2.2.2 Generalized Telegraphers Equations for Buried LossyWires 54
2.2.2.3 Computational Examples 56
2.2.3 Time Domain Analysis for StraightWires above a Lossy Ground 61
2.2.3.1 Space-Time Integro-Differential Equation for PECWire above a Lossy
Ground 61
2.2.3.2 Space-Time Integro-Differential Equation for Lossy Conductors 65
2.2.3.3 Generalized Telegraphers Equations for PECWires 66
2.2.3.4 Generalized Telegrapher's Equations for Lossy Conductors 70
2.2.4 Time Domain Analysis for StraightWires Buried in a Lossy Ground 74
2.2.4.1 Space-Time Integro-Differential Equation for PECWire below a Lossy
Ground 74
2.2.4.2 Space-Time Integro-Differential Equation for Lossy Conductors 79
2.2.4.3 Generalized Telegrapher's Equations for BuriedWires 80
2.2.4.4 Computational Results: BuriedWire Scatterer 82
2.2.4.5 Computational Results: Horizontal Grounding Electrode 84
2.3 Single HorizontalWire in the Presence of a Lossy Half-Space: Comparison
of Analytical Solution, Numerical Solution, and Transmission Line
Approximation 86
2.3.1 Wire above a Perfect Ground 88
2.3.2 Wire above an Imperfect Ground 89
2.3.3 Wire Buried in a Lossy Ground 89
2.3.4 Analytical Solution 90
2.3.5 Boundary Element Procedure 92
2.3.6 The Transmission Line Model 93
2.3.7 Modified Transmission Line Model 94
2.3.8 Computational Examples 95
2.3.8.1 Wire above a PEC Ground 95
2.3.8.2 Wire above a Lossy Ground 95
2.3.8.3 Wire Buried in a Lossy Ground 103
2.3.9 Field Transmitted in a Lower Lossy Half-Space 103
2.3.10 Numerical Results 110
2.4 Single VerticalWire in the Presence of a Lossy Half-Space: Comparison
of Analytical Solution, Numerical Solution, and Transmission Line
Approximation 114
2.4.1 Numerical Solution 117
2.4.2 Analytical Solution 119
2.4.3 Computational Examples 121
2.4.3.1 Transmitting Antenna 122
2.4.3.2 Receiving Antenna 122
2.5 Magnetic Current Loop Excitation of ThinWires 132
2.5.1 Delta Gap and Magnetic Frill 134
2.5.2 Magnetic Current Loop 135
2.5.3 Numerical Solution 136
2.5.4 Numerical Results 139
References 146
3 Electromagnetic Field Coupling to OverheadWires 153
3.1 Frequency Domain Models and Methods 154
3.1.1 Antenna Theory Approach: Set of Coupled Pocklington's Equations 154
3.1.2 Numerical Solution 160
3.1.3 Transmission Line Approximation: Telegrapher's Equations in the
Frequency Domain 162
3.1.4 Computational Examples 162
3.2 Time Domain Models and Methods 167
3.2.1 The Antenna Theory Model 167
3.2.2 The Numerical Solution 175
3.2.3 The Transmission Line Model 181
3.2.4 The Solution of Transmission Line Equations via FDTD 182
3.2.5 Numerical Results 184
3.3 Applications to Antenna Systems 187
3.3.1 Helix Antennas 187
3.3.2 Log-Periodic Dipole Arrays 190
3.3.3 GPR Dipole Antennas 198
References 202
4 Electromagnetic Field Coupling to BuriedWires 205
4.1 Frequency Domain Modeling 205
4.1.1 Antenna Theory Approach: Set of Coupled Pocklington's Equations for
ArbitraryWire Configurations 206
4.1.2 Antenna Theory Approach: Numerical Solution 210
4.1.3 Transmission Line Approximation: 212
4.1.4 Computational Examples 213
4.2 Time Domain Modeling 216
4.2.1 Antenna Theory Approach 216
4.2.2 Transmission Line Model 219
4.2.3 Computational Examples 223
References 223
5 Lightning Electromagnetics 225
5.1 AntennaModel of Lightning Channel 225
5.1.1 Integral Equation Formulation 226
5.1.2 Computational Examples 228
5.2 Vertical AntennaModel of a Lightning Rod 230
5.2.1 Integral Equation Formulation 234
5.2.2 Computational Examples 236
5.3 AntennaModel of aWind Turbine Exposed to Lightning Strike 237
5.3.1 Integral Equation Formulation for Multiple OverheadWires 240
5.3.2 Numerical Solution of Integral Equation Set for Overhead Wires 241
5.3.3 Computational Example: Transient Response of aWT Lightning Strike 242
References 247
6 Transient Analysis of Grounding Systems 253
6.1 Frequency Domain Analysis of Horizontal Grounding Electrode 254
6.1.1 Integral Equation Formulation/Reflection Coefficient Approach 254
6.1.2 Numerical Solution 257
6.1.3 Integral Equation Formulation/Sommerfeld Integral Approach 258
6.1.4 Analytical Solution 260
6.1.5 Modified Transmission Line Method (TLM) Approach 261
6.1.6 Computational Examples 261
6.1.7 Application of Magnetic Current Loop (MCL) Source model to Horizontal
Grounding Electrode 284
6.2 Frequency Domain Analysis of Vertical Grounding Electrode 288
6.2.1 Integral Equation Formulation/Reflection Coefficient Approach 288
6.2.2 Numerical Solution 290
6.2.3 Analytical Solution 291
6.2.4 Examples 292
6.3 Frequency Domain Analysis of Complex Grounding Systems 297
6.3.1 Antenna Theory Approach: Set of Homogeneous Pocklington's
Integro-Differential Equations for Grounding Systems 298
6.3.2 Antenna Theory Approach: Numerical Solution 300
6.3.3 Modified Transmission Line Method Approach 301
6.3.4 Finite Difference Solution of the Potential Differential Equation for
Transient Induced Voltage 301
6.3.5 Computational Examples: Grounding Grids and Rings 304
6.3.6 Computational Examples: Grounding Systems forWTs 311
6.4 Time Domain Analysis of Horizontal Grounding Electrodes 320
6.4.1 Homogeneous Integral Equation Formulation in the Time Domain 321
6.4.2 Numerical Solution Procedure for Pocklington's Equation 322
6.4.3 Numerical Results for Grounding Electrode 323
6.4.4 Analytical Solution of Pocklington's Equation 323
6.4.5 Transmission Line Model 324
6.4.6 FDTD Solution of Telegrapher's Equations 325
6.4.7 The Leakage Current 326
6.4.8 Computational Examples for the Horizontal Grounding Electrode 328
References 331
Part II Advanced Models in Bioelectromagnetics 337
7 Human Exposure to Electromagnetic Fields - General Aspects 339
7.1 Dosimetry 340
7.1.1 Low Frequency Exposures 341
7.1.2 High Frequency Exposures 342
7.2 Coupling Mechanisms 342
7.2.1 Coupling to LF Electric Fields 343
7.2.2 Coupling to LF Magnetic Fields 343
7.2.3 Absorption of Energy from Electromagnetic Radiation 343
7.2.4 Indirect Coupling Mechanisms 344
7.3 Biological Effects 344
7.3.1 Effects of ELF Fields 345
7.3.2 Effects of HF Radiation 345
7.4 Safety Guidelines and Exposure Limits 348
7.5 Some Remarks 351
References 351
8 Modeling of Human Exposure to Static and Low Frequency Fields 353
8.1 Exposure to Static Fields 354
8.1.1 Finite Element Solution 356
8.1.2 Boundary Element Solution 357
8.1.3 Numerical Results 360
8.2 Exposure to Low Frequency (LF) Fields 361
8.2.1 Numerical Results 362
References 363
9 Modeling of Human Exposure to High Frequency (HF) Electromagnetic Fields
365
9.1 Internal Electromagnetic Field DosimetryMethods 366
9.1.1 Solution by the Hybrid Finite Element/Boundary Element Approach 366
9.1.2 Numerical Results for the Human Eye Exposure 368
9.1.3 Solution by the Method of Moments 372
9.1.4 Computational Example for the Brain Exposure 380
9.2 Thermal Dosimetry Procedures 381
9.2.1 Finite Element Solution of Bio-Heat Transfer Equation 381
9.2.2 Numerical Results 382
References 383
10 Biomedical Applications of Electromagnetic Fields 387
10.1 Modeling of Induced Fields due to Transcranial Magnetic Stimulation
(TMS) Treatment 388
10.1.1 Numerical Results 391
10.2 Modeling of Nerve Fiber Excitation 392
10.2.1 Passive Nerve Fiber 396
10.2.2 Numerical Results for Passive Nerve Fiber 397
10.2.3 Active Nerve Fiber 397
10.2.4 Numerical Results for Active Nerve Fiber 401
References 403
Index 407