Rubin H. Landau, Manuel José Páez
Computational Problems for Physics (eBook, ePUB)
With Guided Solutions Using Python
75,95 €
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
75,95 €
Als Download kaufen
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
38 °P sammeln
Rubin H. Landau, Manuel José Páez
Computational Problems for Physics (eBook, ePUB)
With Guided Solutions Using Python
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple) on the Web. It's also intended as a self-study guide for learning how to use computer methods in physics.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.44MB
Andere Kunden interessierten sich auch für
- Rubin H. LandauComputational Problems for Physics (eBook, PDF)75,95 €
- Yinpeng WangDeep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems (eBook, ePUB)52,95 €
- H. W. WyldMathematical Methods for Physics (eBook, ePUB)52,95 €
- Matthew D. McCluskeyNo-Frills Physics (eBook, ePUB)34,95 €
- David J. PineIntroduction to Python for Science and Engineering (eBook, ePUB)52,95 €
- Christopher W. KulpClassical Mechanics (eBook, ePUB)89,95 €
- Achim FeldmeierIntroduction to Arnold's Proof of the Kolmogorov-Arnold-Moser Theorem (eBook, ePUB)48,95 €
-
-
-
This textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple) on the Web. It's also intended as a self-study guide for learning how to use computer methods in physics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 410
- Erscheinungstermin: 30. Mai 2018
- Englisch
- ISBN-13: 9781351784023
- Artikelnr.: 56890491
- Verlag: Taylor & Francis
- Seitenzahl: 410
- Erscheinungstermin: 30. Mai 2018
- Englisch
- ISBN-13: 9781351784023
- Artikelnr.: 56890491
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics). His research specialty is computational studies of the scattering of elementary particles from subatomic systems and momentum space quantum mechanics. Landau has taught courses throughout the undergraduate and graduate curricula, and, for over 20 years, in computational physics. He was the founder of the OSU Computational Physics degree program, an Executive Committee member of the APS Division of Computational Physics, and the AAPT Technology Committee. At present Landau is the Education co-editor for AIP/IEEE Computing in Science & Engineering and co-editor of this Taylor & Francis book series on computational physics. He has been a member of the XSEDE advisory committee and has been part of the Education Program at the SuperComputing (SC) conferences for over a decade.
Manuel Jose Paez-Mejia has been a Professor of Physics at Universidad de Antioquia in Medellín, Colombia since January 1969. He has been teaching courses in Modern Physics, Nuclear Physics, Computational Physics, Numerical Methods, Mathematical Physics, and Programming in Fortran, Pascal, and C languages. He has authored scientific papers in nuclear physics and computational physics, as well as texts on the C Language, General Physics, and Computational Physics (coauthored with Rubin Landau and Cristian Bordeianu). In the past, he and Landau conducted pioneering computational investigations of the interactions of mesons and nucleons with few-body nuclei. Professor Paez has led workshop in Computational Physics throughout Latin America, and has been Director of Graduate Studies in Physics at the Universidad de Antioquia.
Manuel Jose Paez-Mejia has been a Professor of Physics at Universidad de Antioquia in Medellín, Colombia since January 1969. He has been teaching courses in Modern Physics, Nuclear Physics, Computational Physics, Numerical Methods, Mathematical Physics, and Programming in Fortran, Pascal, and C languages. He has authored scientific papers in nuclear physics and computational physics, as well as texts on the C Language, General Physics, and Computational Physics (coauthored with Rubin Landau and Cristian Bordeianu). In the past, he and Landau conducted pioneering computational investigations of the interactions of mesons and nucleons with few-body nuclei. Professor Paez has led workshop in Computational Physics throughout Latin America, and has been Director of Graduate Studies in Physics at the Universidad de Antioquia.
1 Computational Basics for Physics 2 Data Analytics for Physics 3 Classical & Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity & Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8 Biological Models: Population Dynamics & Plant Growth 9 Additional Entry-Level Problems Appendix: Python Codes
1 Computational Basics for Physics 2 Data Analytics for Physics 3 Classical
& Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity &
Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8
Biological Models: Population Dynamics & Plant Growth 9 Additional
Entry-Level Problems Appendix: Python Codes
& Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity &
Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8
Biological Models: Population Dynamics & Plant Growth 9 Additional
Entry-Level Problems Appendix: Python Codes
1 Computational Basics for Physics 2 Data Analytics for Physics 3 Classical & Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity & Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8 Biological Models: Population Dynamics & Plant Growth 9 Additional Entry-Level Problems Appendix: Python Codes
1 Computational Basics for Physics 2 Data Analytics for Physics 3 Classical
& Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity &
Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8
Biological Models: Population Dynamics & Plant Growth 9 Additional
Entry-Level Problems Appendix: Python Codes
& Nonlinear Dynamics 4 Wave Equations & Fluid Dynamics 5 Electricity &
Magnetism 6 Quantum Mechanics 7 Thermodynamics & Statistical Physics 8
Biological Models: Population Dynamics & Plant Growth 9 Additional
Entry-Level Problems Appendix: Python Codes