We encounter here a friendly invitation to the field of "counting integer points in polytopes," also known as Ehrhart theory, and its various connections to elementary finite Fourier analysis, generating functions, the Frobenius coin-exchange problem, solid angles, magic squares, Dedekind sums, computational geometry, and more. With 250 exercises and open problems, the reader feels like an active participant, and the authors' engaging style encourages such participation. The many compelling pictures that accompany the proofs and examples add to the invitingstyle.
For teachers, this text is ideally suited as a capstone course for undergraduate students or as a compelling text in discrete mathematical topics for beginning graduate students. For scientists, this text can be utilized as a quick tooling device, especially for those who want a self-contained, easy-to-read introduction to these topics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Reviews of the first edition:
"You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics."
- MAA Reviews
"The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the material, exercises, open problems and an extensive bibliography."
- Zentralblatt MATH
"This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron."
- Mathematical Reviews
"Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course."
- CHOICE