Concentration analysis provides, in settings without a priori available compactness, a manageable structural description for the functional sequences intended to approximate solutions of partial differential equations. Since the introduction of concentration compactness in the 1980s, concentration analysis today is formalized on the functional-analytic level as well as in terms of wavelets, extends to a wide range of spaces, involves much larger class of invariances than the original Euclidean rescalings and has a broad scope of applications to PDE.
The book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
The book represents current research in concentration and blow-up phenomena from various perspectives, with a variety of applications to elliptic and evolution PDEs, as well as a systematic functional-analytic background for concentration phenomena, presented by profile decompositions based on wavelet theory and cocompact imbeddings.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.