Concise Encyclopedia of Coding Theory (eBook, ePUB)
Redaktion: Huffman, W. Cary; Solé, Patrick; Kim, Jon-Lark
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
81,95 €
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
Concise Encyclopedia of Coding Theory (eBook, ePUB)
Redaktion: Huffman, W. Cary; Solé, Patrick; Kim, Jon-Lark
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Coding theory has grown into a discipline with many practical applications requiring various mathematical techniques in the last few decades. Most topics covered in this book are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.5MB
Andere Kunden interessierten sich auch für
- Concise Encyclopedia of Coding Theory (eBook, PDF)81,95 €
- Victor ShcherbacovElements of Quasigroup Theory and Applications (eBook, ePUB)52,95 €
- Istvan MezoCombinatorics and Number Theory of Counting Sequences (eBook, ePUB)45,95 €
- Sahadeo PadhyeIntroduction to Cryptography (eBook, ePUB)48,95 €
- Hugo D JunghennDiscrete Mathematics with Coding (eBook, ePUB)95,95 €
- Victor ShcherbacovElements of Quasigroup Theory and Applications (eBook, PDF)52,95 €
- Istvan MezoCombinatorics and Number Theory of Counting Sequences (eBook, PDF)46,95 €
-
-
-
Coding theory has grown into a discipline with many practical applications requiring various mathematical techniques in the last few decades. Most topics covered in this book are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 998
- Erscheinungstermin: 25. März 2021
- Englisch
- ISBN-13: 9781351375092
- Artikelnr.: 61272323
- Verlag: Taylor & Francis
- Seitenzahl: 998
- Erscheinungstermin: 25. März 2021
- Englisch
- ISBN-13: 9781351375092
- Artikelnr.: 61272323
W. Cary Huffman (1948-) received his PhD in mathematics from the California Institute of Technology in 1974. He taught at Dartmouth College (1974 - 1976) as a John Wesley Young Research Instructor and then at Union College (1976 - 1978). In 1978, he joined the Department of Mathematics and Statistics at Loyola University Chicago, continuing there until his retirement in 2018; he is now professor emeritus. He served as that department's chair from 1986 to 1992. He is co-editor of the Handbook of Coding Theory and co-author of Fundamentals of Error-Correcting Codes, both with Vera Pless. In addition, he has published numerous papers in finite group theory, combinatorics, and algebraic coding theory. Jon-Lark Kim received his Ph.D. in 2002 from Department of Math of the University of Illinois at Chicago. He was an Associate Professor at the University of Louisville until 2012. He is currently professor at Math Department of Sogang University in Seoul. He has authored more than fifty research papers and one book on Coding Theory. He is the recipient of the 2004 Kirkman medal from the Institute of Combinatorics and its Applications. His research interests include Coding Theory, Cryptography, Combinatorics, Bioinformatics, and Artificial Intelligence. Patrick Solé (1960-) received the Ingénieur and the Docteur Ingénieur degrees from Ecole Nationale Supérieure des Télécommunications, Paris, France in 1984 and 1987, respectively, and the Habilitation à Diriger des Recherches degree from University of Nice Sophia-Antipolis, France, in 1993. He has held several visiting positions at Syracuse University, Syracuse, NY, in 1987 - 1989, Macquarie University, Sydney, Australia, in 1994 - 1996, and at University des Sciences et Techniques de Lille, Lille, France, in 1999 - 2000. He has been a permanent member of Centre National de la Recherche Scientifique since 1989 and was later promoted to the rank of Senior Researcher (Directeur de Recherche) in 1996. His research interests include coding theory (covering radius, codes over rings, geometric codes, quantum codes), interconnection networks (graph spectra, expanders), space time codes (lattices, theta series), and cryptography (Boolean functions, secret sharing schemes). He is the author of more than 200 journal papers, and of four books.
Part I. Coding Fundamentals. 1. Basics of Coding Theory. 2. Cyclic Codes
over Finite Fields. 3. Construction and Classification of Codes. 4.
Self-Dual Codes. 5. Codes and Designs. 6. Codes over Rings. 7. Quasi-Cyclic
Codes. 8. Introduction to Skew-Polynomial Rings and Skew-Cyclic Codes. 9.
Additive Cyclic Codes. 10. Convolutional Codes. 11. Rank-Metric Codes. 12.
Linear Programming Bounds. 13. Semidefinite Programming Bounds for
Error-Correcting Codes. Part II. Families of Codes. 14. Coding Theory and
Galois Geometries. 15. Algebraic Geometry Codes and Some Applications. 16.
Codes in Group Algebras. 17. Constacyclic Codes over Finite Commutative
Chain Rings. 18. Weight Distribution of Trace Codes over Finite Rings. 19.
Two-Weight Codes. 20. Linear Codes from Functions. 21. Codes over Graphs.
Part III. Applications. 22. Alternative Metrics. 23. Algorithmic Methods.
24. Interpolation Decoding. 25. Pseudo-Noise Sequences. 26. Lattice Coding.
27. Quantum Error-Control Codes. 28. Space-Time Coding. 29. Network Codes.
30. Coding for Erasures and Fountain Codes. 31. Codes for Distributed
Storage. 32. Polar Codes. 33. Secret Sharing with Linear Codes. 34.
Code-Based Cryptography. Bibliography. Index.
over Finite Fields. 3. Construction and Classification of Codes. 4.
Self-Dual Codes. 5. Codes and Designs. 6. Codes over Rings. 7. Quasi-Cyclic
Codes. 8. Introduction to Skew-Polynomial Rings and Skew-Cyclic Codes. 9.
Additive Cyclic Codes. 10. Convolutional Codes. 11. Rank-Metric Codes. 12.
Linear Programming Bounds. 13. Semidefinite Programming Bounds for
Error-Correcting Codes. Part II. Families of Codes. 14. Coding Theory and
Galois Geometries. 15. Algebraic Geometry Codes and Some Applications. 16.
Codes in Group Algebras. 17. Constacyclic Codes over Finite Commutative
Chain Rings. 18. Weight Distribution of Trace Codes over Finite Rings. 19.
Two-Weight Codes. 20. Linear Codes from Functions. 21. Codes over Graphs.
Part III. Applications. 22. Alternative Metrics. 23. Algorithmic Methods.
24. Interpolation Decoding. 25. Pseudo-Noise Sequences. 26. Lattice Coding.
27. Quantum Error-Control Codes. 28. Space-Time Coding. 29. Network Codes.
30. Coding for Erasures and Fountain Codes. 31. Codes for Distributed
Storage. 32. Polar Codes. 33. Secret Sharing with Linear Codes. 34.
Code-Based Cryptography. Bibliography. Index.
Part I. Coding Fundamentals. 1. Basics of Coding Theory. 2. Cyclic Codes
over Finite Fields. 3. Construction and Classification of Codes. 4.
Self-Dual Codes. 5. Codes and Designs. 6. Codes over Rings. 7. Quasi-Cyclic
Codes. 8. Introduction to Skew-Polynomial Rings and Skew-Cyclic Codes. 9.
Additive Cyclic Codes. 10. Convolutional Codes. 11. Rank-Metric Codes. 12.
Linear Programming Bounds. 13. Semidefinite Programming Bounds for
Error-Correcting Codes. Part II. Families of Codes. 14. Coding Theory and
Galois Geometries. 15. Algebraic Geometry Codes and Some Applications. 16.
Codes in Group Algebras. 17. Constacyclic Codes over Finite Commutative
Chain Rings. 18. Weight Distribution of Trace Codes over Finite Rings. 19.
Two-Weight Codes. 20. Linear Codes from Functions. 21. Codes over Graphs.
Part III. Applications. 22. Alternative Metrics. 23. Algorithmic Methods.
24. Interpolation Decoding. 25. Pseudo-Noise Sequences. 26. Lattice Coding.
27. Quantum Error-Control Codes. 28. Space-Time Coding. 29. Network Codes.
30. Coding for Erasures and Fountain Codes. 31. Codes for Distributed
Storage. 32. Polar Codes. 33. Secret Sharing with Linear Codes. 34.
Code-Based Cryptography. Bibliography. Index.
over Finite Fields. 3. Construction and Classification of Codes. 4.
Self-Dual Codes. 5. Codes and Designs. 6. Codes over Rings. 7. Quasi-Cyclic
Codes. 8. Introduction to Skew-Polynomial Rings and Skew-Cyclic Codes. 9.
Additive Cyclic Codes. 10. Convolutional Codes. 11. Rank-Metric Codes. 12.
Linear Programming Bounds. 13. Semidefinite Programming Bounds for
Error-Correcting Codes. Part II. Families of Codes. 14. Coding Theory and
Galois Geometries. 15. Algebraic Geometry Codes and Some Applications. 16.
Codes in Group Algebras. 17. Constacyclic Codes over Finite Commutative
Chain Rings. 18. Weight Distribution of Trace Codes over Finite Rings. 19.
Two-Weight Codes. 20. Linear Codes from Functions. 21. Codes over Graphs.
Part III. Applications. 22. Alternative Metrics. 23. Algorithmic Methods.
24. Interpolation Decoding. 25. Pseudo-Noise Sequences. 26. Lattice Coding.
27. Quantum Error-Control Codes. 28. Space-Time Coding. 29. Network Codes.
30. Coding for Erasures and Fountain Codes. 31. Codes for Distributed
Storage. 32. Polar Codes. 33. Secret Sharing with Linear Codes. 34.
Code-Based Cryptography. Bibliography. Index.