48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

Concise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component…mehr

Produktbeschreibung
Concise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component analysis. This book is designed for onesemester teaching to undergraduate students.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Qingwen Hu is Assistant Professor at the University of Texas at Dallas. His research interests include: dynamical systems; state-dependent delay differential equations and their applications in engineering and biology; equivariant degree theory and applications; nonlinear analysis; operations research.