Comprised of 40 chapters, this book begins with an introduction to mean field, Boltzmann, and Hopfield networks, focusing on deterministic Boltzmann learning in networks with asymmetric connectivity; contrastive Hebbian learning in the continuous Hopfield model; and energy minimization and the satisfiability of propositional logic. Mean field networks that learn to discriminate temporally distorted strings are described. The next sections are devoted to reinforcement learning and genetic learning, along with temporal processing and modularity. Cognitive modeling and symbol processing as well as VLSI implementation are also discussed.
This monograph will be of interest to both students and academicians concerned with connectionist modeling.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.