4,99 €
4,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
4,99 €
4,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
4,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
4,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Che cos'è il consenso al campione casuale
Il consenso al campione casuale, noto anche come RANSAC, è un metodo iterativo utilizzato per stimare i parametri di un modello matematico basato su una raccolta dei dati osservati che includono valori anomali. Questo metodo viene utilizzato in situazioni in cui è consentito che i valori anomali non abbiano alcun impatto sui valori delle stime. La conclusione è che è anche possibile vederlo come uno strumento per individuare valori anomali. Un algoritmo è considerato non deterministico se è in grado di generare un risultato adeguato solo con una…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 1.84MB
  • FamilySharing(5)
Produktbeschreibung
Che cos'è il consenso al campione casuale

Il consenso al campione casuale, noto anche come RANSAC, è un metodo iterativo utilizzato per stimare i parametri di un modello matematico basato su una raccolta dei dati osservati che includono valori anomali. Questo metodo viene utilizzato in situazioni in cui è consentito che i valori anomali non abbiano alcun impatto sui valori delle stime. La conclusione è che è anche possibile vederlo come uno strumento per individuare valori anomali. Un algoritmo è considerato non deterministico se è in grado di generare un risultato adeguato solo con una certa probabilità, e questa probabilità aumenta all'aumentare del numero di iterazioni consentite dal metodo. Nel 1981, Fischler e Bolles, che lavoravano presso SRI International, furono i primi a pubblicare l'algoritmo. Per risolvere il problema della determinazione della posizione (LDP), che è un problema in cui l'obiettivo è trovare i punti nello spazio che si proiettano su un'immagine e quindi convertire tali punti in una serie di punti di riferimento con posizioni note, hanno utilizzato RANSAC.

Come trarrai vantaggio

(I) Approfondimenti e convalide sui seguenti argomenti:

Capitolo 1: Consenso del campione casuale

Capitolo 2: Stimatore

Capitolo 3: Minimi quadrati

Capitolo 4: Valore anomalo

Capitolo 5: Convalida incrociata (statistiche)

Capitolo 6: Errori e residui

Capitolo 7: Modello di miscela

Capitolo 8: Statistiche robuste

Capitolo 9: Unione di immagini

Capitolo 10: Ricampionamento (statistiche)

(II) Rispondere alle principali domande del pubblico sul consenso del campione casuale.

(III) Esempi del mondo reale per l'utilizzo di consenso campione casuale in molti campi.

A chi è rivolto questo libro

Professionisti, studenti universitari e laureati, appassionati, hobbisti e coloro che vogliono andare oltre le conoscenze o le informazioni di base per qualsiasi tipo di consenso del campione casuale.

 

 


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.