Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Seidenberg's condition P.- Field extensions.- Dedekind domains.- Effective mathematics - the computer algebra viewpoint.- On some open problems in constructive probability theory.- Consistency and independence results in intuitionistic set theory.- Errata.- Computability of ordinal recursion of type level two.- A constructive approach to classical mathematics.- Remarks on the notion of standard non-isomorphic natural number series.- Reflections on Bishop's philosophy of mathematics.- Formalizing constructive mathematics: Why and how?.- Independence of premisses and the free topos.- An intuitionistic infinitesimal calculus.- Liberal constructive set theory.- Locating metric complements in ?n.- A disjunctive decomposition theorem for classical theories.- Towards a constructive foundation for quantum mechanics.- About infinity, finiteness and finitization (in connection with the foundations of mathematics).- A class of theorems with valid constructive counterparts.- Rational constructive analysis.
Seidenberg's condition P.- Field extensions.- Dedekind domains.- Effective mathematics - the computer algebra viewpoint.- On some open problems in constructive probability theory.- Consistency and independence results in intuitionistic set theory.- Errata.- Computability of ordinal recursion of type level two.- A constructive approach to classical mathematics.- Remarks on the notion of standard non-isomorphic natural number series.- Reflections on Bishop's philosophy of mathematics.- Formalizing constructive mathematics: Why and how?.- Independence of premisses and the free topos.- An intuitionistic infinitesimal calculus.- Liberal constructive set theory.- Locating metric complements in ?n.- A disjunctive decomposition theorem for classical theories.- Towards a constructive foundation for quantum mechanics.- About infinity, finiteness and finitization (in connection with the foundations of mathematics).- A class of theorems with valid constructive counterparts.- Rational constructive analysis.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826