142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
142,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Contact in Structural Mechanics treats the problem of contact in the context of large deformations and the Coulomb friction law. The proposed formulation is based on a weak form that generalizes the classical principle of virtual powers in the sense that the weak form also encompasses all the contact laws. This formulation is thus a weighted residue method and has the advantage of being amenable to a standard finite element discretization.
This book provides the reader with a detailed description of contact kinematics and the variation calculus of kinematic quantities, two essential
…mehr

Produktbeschreibung
Contact in Structural Mechanics treats the problem of contact in the context of large deformations and the Coulomb friction law. The proposed formulation is based on a weak form that generalizes the classical principle of virtual powers in the sense that the weak form also encompasses all the contact laws. This formulation is thus a weighted residue method and has the advantage of being amenable to a standard finite element discretization.

This book provides the reader with a detailed description of contact kinematics and the variation calculus of kinematic quantities, two essential subjects for any contact study. The numerical resolution is carried out in statics and dynamics. In both cases, the derivation of the contact tangent matrix - an essential ingredient for iterative calculation - is explained in detail. Several numerical examples are presented to illustrate the efficiency of the method.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.

Autorenporträt
Anh Le van is Professor of Structural Mechanics in the Faculty of Science and Technology, University of Nantes, France. His research at the Research Institute in Civil and Mechanical Engineering (GeM) focuses on membrane structures and, more specifically, on contact and bifurcation problems in these structures.