This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed.
Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation.
Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the reviews:
"The book treats a large class of fully nonlinear parabolic PDEs via probabilistic methods. ... The monograph may be strongly recommended as an excellent reading to PhD students, postdocs et al working in the area of controlled stochastic processes and/or nonlinear partial differential equations of the second order. ... recommended to a wider audience of all students specializing in stochastic analysis or stochastic finance starting from MSc level." (Alexander Yu Veretennikov, Zentralblatt MATH, Vol. 1171, 2009)
"The book treats a large class of fully nonlinear parabolic PDEs via probabilistic methods. ... The monograph may be strongly recommended as an excellent reading to PhD students, postdocs et al working in the area of controlled stochastic processes and/or nonlinear partial differential equations of the second order. ... recommended to a wider audience of all students specializing in stochastic analysis or stochastic finance starting from MSc level." (Alexander Yu Veretennikov, Zentralblatt MATH, Vol. 1171, 2009)