This book, first published in 2004, provides an introduction to the major mathematical structures used in physics today. It covers the concepts and techniques needed for topics such as group theory, Lie algebras, topology, Hilbert space and differential geometry. Important theories of physics such as classical and quantum mechanics, thermodynamics, and special and general relativity are also developed in detail, and presented in the appropriate mathematical language. The book is suitable for advanced undergraduate and beginning graduate students in mathematical and theoretical physics, as well as applied mathematics. It includes numerous exercises and worked examples, to test the reader's understanding of the various concepts, as well as extending the themes covered in the main text. The only prerequisites are elementary calculus and linear algebra. No prior knowledge of group theory, abstract vector spaces or topology is required.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
'This is a beautifully crafted book. ... Peter Szekeres presents in the most elegant and compelling manner a magnificent overview of how classic areas such as algebra, topology, vector spaces and differential geometry form a consistent and unified language that has enabled us to develop a description of the physical world reaching a truly profound level of comprehension. ... Szekeres's style is clear, thorough and immensely readable. His selection of topics concentrates on areas where a fully developed rigorous mathematical exposition is possible. ... One cannot help but be slightly awed by the beauty and the capability with which seemingly abstract concepts, often developed in the realms of pure mathematics, turn out to be applicable ... I recommend that you get hold of this book for yourself or for your library.' The Times Higher Education Supplement