40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.56MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Birkhäuser Boston
- Seitenzahl: 208
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781468494242
- Artikelnr.: 44203975
- Verlag: Birkhäuser Boston
- Seitenzahl: 208
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781468494242
- Artikelnr.: 44203975
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Structures on Riemannian manifolds.-
1. Riemannian manifolds.-
2. Kaehlerian manifolds.-
3. Sasakian manifolds.-
4. f-structure.- II. Submanifolds.-
1. Induced connection and second fundamental form.-
2. Equations of Gauss, Codazzi and Ricci.-
3. Normal connection.-
4. Laplacian of the second fundamental form.-
5. Submanifolds of space forms.-
6. Parallel second fundamental form.- III. Contact CR submanifolds.-
1. Submanifolds of Sasakian manifolds.-
2. f-structure on submanifolds.-
3. Integrability of distributions.-
4. Totally contact umbilical submanifolds.-
5. Examples of contact CR submanifolds.-
6. Flat normal connection.-
7. Minimal contact CR submanifolds.- IV. CR submanifolds.-
1. Submanifolds of Kaehlerian manifolds.-
2. CR submanifolds of Hermitian manifolds.-
3. Characterization of CR submanifolds.-
4. Distributions.-
5. Parallel f-structure.-
6. Totally umbilical submanifolds.-
7. Examples of CR submanifolds.-
8. Semi-flat normal connection.-
9. Normal connection of invariant submanifolds.-
10. Parallel mean curvature vector.-
11. Integral formulas.-
12. CR submanifolds of Cm.- V. Submanifolds and Riemannian fibre bundles.-
1. Curvature tensors.-
2. Mean curvature vector.-
3. Lengths of the second fundamental forms.- VI. Hypersurfaces.-
1. Real hypersurfaces of complex space forms.-
2. Pseudo-Einstein real hypersurfaces.-
3. Generic minimal submanifolds.-
4. Semidefinite second fundamental form.-
5. Hypersurfaces of S2n+1.-
6. (f,g,u,v,?)-structure.- Author index.
1. Riemannian manifolds.-
2. Kaehlerian manifolds.-
3. Sasakian manifolds.-
4. f-structure.- II. Submanifolds.-
1. Induced connection and second fundamental form.-
2. Equations of Gauss, Codazzi and Ricci.-
3. Normal connection.-
4. Laplacian of the second fundamental form.-
5. Submanifolds of space forms.-
6. Parallel second fundamental form.- III. Contact CR submanifolds.-
1. Submanifolds of Sasakian manifolds.-
2. f-structure on submanifolds.-
3. Integrability of distributions.-
4. Totally contact umbilical submanifolds.-
5. Examples of contact CR submanifolds.-
6. Flat normal connection.-
7. Minimal contact CR submanifolds.- IV. CR submanifolds.-
1. Submanifolds of Kaehlerian manifolds.-
2. CR submanifolds of Hermitian manifolds.-
3. Characterization of CR submanifolds.-
4. Distributions.-
5. Parallel f-structure.-
6. Totally umbilical submanifolds.-
7. Examples of CR submanifolds.-
8. Semi-flat normal connection.-
9. Normal connection of invariant submanifolds.-
10. Parallel mean curvature vector.-
11. Integral formulas.-
12. CR submanifolds of Cm.- V. Submanifolds and Riemannian fibre bundles.-
1. Curvature tensors.-
2. Mean curvature vector.-
3. Lengths of the second fundamental forms.- VI. Hypersurfaces.-
1. Real hypersurfaces of complex space forms.-
2. Pseudo-Einstein real hypersurfaces.-
3. Generic minimal submanifolds.-
4. Semidefinite second fundamental form.-
5. Hypersurfaces of S2n+1.-
6. (f,g,u,v,?)-structure.- Author index.
I. Structures on Riemannian manifolds.-
1. Riemannian manifolds.-
2. Kaehlerian manifolds.-
3. Sasakian manifolds.-
4. f-structure.- II. Submanifolds.-
1. Induced connection and second fundamental form.-
2. Equations of Gauss, Codazzi and Ricci.-
3. Normal connection.-
4. Laplacian of the second fundamental form.-
5. Submanifolds of space forms.-
6. Parallel second fundamental form.- III. Contact CR submanifolds.-
1. Submanifolds of Sasakian manifolds.-
2. f-structure on submanifolds.-
3. Integrability of distributions.-
4. Totally contact umbilical submanifolds.-
5. Examples of contact CR submanifolds.-
6. Flat normal connection.-
7. Minimal contact CR submanifolds.- IV. CR submanifolds.-
1. Submanifolds of Kaehlerian manifolds.-
2. CR submanifolds of Hermitian manifolds.-
3. Characterization of CR submanifolds.-
4. Distributions.-
5. Parallel f-structure.-
6. Totally umbilical submanifolds.-
7. Examples of CR submanifolds.-
8. Semi-flat normal connection.-
9. Normal connection of invariant submanifolds.-
10. Parallel mean curvature vector.-
11. Integral formulas.-
12. CR submanifolds of Cm.- V. Submanifolds and Riemannian fibre bundles.-
1. Curvature tensors.-
2. Mean curvature vector.-
3. Lengths of the second fundamental forms.- VI. Hypersurfaces.-
1. Real hypersurfaces of complex space forms.-
2. Pseudo-Einstein real hypersurfaces.-
3. Generic minimal submanifolds.-
4. Semidefinite second fundamental form.-
5. Hypersurfaces of S2n+1.-
6. (f,g,u,v,?)-structure.- Author index.
1. Riemannian manifolds.-
2. Kaehlerian manifolds.-
3. Sasakian manifolds.-
4. f-structure.- II. Submanifolds.-
1. Induced connection and second fundamental form.-
2. Equations of Gauss, Codazzi and Ricci.-
3. Normal connection.-
4. Laplacian of the second fundamental form.-
5. Submanifolds of space forms.-
6. Parallel second fundamental form.- III. Contact CR submanifolds.-
1. Submanifolds of Sasakian manifolds.-
2. f-structure on submanifolds.-
3. Integrability of distributions.-
4. Totally contact umbilical submanifolds.-
5. Examples of contact CR submanifolds.-
6. Flat normal connection.-
7. Minimal contact CR submanifolds.- IV. CR submanifolds.-
1. Submanifolds of Kaehlerian manifolds.-
2. CR submanifolds of Hermitian manifolds.-
3. Characterization of CR submanifolds.-
4. Distributions.-
5. Parallel f-structure.-
6. Totally umbilical submanifolds.-
7. Examples of CR submanifolds.-
8. Semi-flat normal connection.-
9. Normal connection of invariant submanifolds.-
10. Parallel mean curvature vector.-
11. Integral formulas.-
12. CR submanifolds of Cm.- V. Submanifolds and Riemannian fibre bundles.-
1. Curvature tensors.-
2. Mean curvature vector.-
3. Lengths of the second fundamental forms.- VI. Hypersurfaces.-
1. Real hypersurfaces of complex space forms.-
2. Pseudo-Einstein real hypersurfaces.-
3. Generic minimal submanifolds.-
4. Semidefinite second fundamental form.-
5. Hypersurfaces of S2n+1.-
6. (f,g,u,v,?)-structure.- Author index.