44,95 €
44,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
44,95 €
44,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
Als Download kaufen
44,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
Jetzt verschenken
44,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
  • Format: PDF

This text presents a careful introduction to methods of cryptology and error correction in wide use throughout the world and the concepts of abstract algebra and number theory that are essential for understanding these methods. The objective is to provide a thorough understanding of RSA, Diffie-Hellman, and Blum-Goldwasser cryptosystems and Hamming and Reed-Solomon error correction: how they are constructed, how they are made to work efficiently, and also how they can be attacked. To reach that level of understanding requires and motivates many ideas found in a first course in abstract…mehr

Produktbeschreibung
This text presents a careful introduction to methods of cryptology and error correction in wide use throughout the world and the concepts of abstract algebra and number theory that are essential for understanding these methods. The objective is to provide a thorough understanding of RSA, Diffie-Hellman, and Blum-Goldwasser cryptosystems and Hamming and Reed-Solomon error correction: how they are constructed, how they are made to work efficiently, and also how they can be attacked. To reach that level of understanding requires and motivates many ideas found in a first course in abstract algebra-rings, fields, finite abelian groups, basic theory of numbers, computational number theory, homomorphisms, ideals, and cosets. Those who complete this book will have gained a solid mathematical foundation for more specialized applied courses on cryptology or error correction, and should also be well prepared, both in concepts and in motivation, to pursue more advanced study in algebra and number theory.

This text is suitable for classroom or online use or for independent study. Aimed at students in mathematics, computer science, and engineering, the prerequisite includes one or two years of a standard calculus sequence. Ideally the reader will also take a concurrent course in linear algebra or elementary matrix theory. A solutions manual for the 400 exercises in the book is available to instructors who adopt the text for their course.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Lindsay N. Childs is Professor Emeritus at the University of Albany where he earned recognition as a much-loved mentor of students, and as an expert in Galois field theory. Capping his tenure at Albany, he was named a Collins Fellow for his extraordinary devotion to the University at Albany and the people in it over a sustained period of time. Post University of Albany, Professor Childs has taught a sequence of online courses whose content evolved into this book. Lindsay Childs is author of A Concrete Introduction to Higher Algebra, published in Springer's Undergraduate Texts in Mathematics series, as well as a monograph, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory (American Mathematical Society), and more than 60 research publications in abstract algebra.

Rezensionen
"This is a really nice way of introducing students to abstract algebra. It is evident that the author has spent much time polishing the presentation including large amount of details (and numerous examples) which make the book ideal for self-study. Even though the book starts out very elementary (basically requiring no prior knowledge beyond integer arithmetic), it gets to some sophisticated results towards the end. So in summary, I can warmly recommend this book as a first introduction to algebra." (G. Teschl, Monatshefte für Mathematik, Vol. 196 (3), November, 2021)