Crystal Growth Processes Based on Capillarity (eBook, PDF)
Czochralski, Floating Zone, Shaping and Crucible Techniques
Redaktion: Duffar, Thierry
Alle Infos zum eBook verschenken
Crystal Growth Processes Based on Capillarity (eBook, PDF)
Czochralski, Floating Zone, Shaping and Crucible Techniques
Redaktion: Duffar, Thierry
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Crystal Growth Processes Based on Capillarity closely examines crystal growth technologies, like Czochralski, Floating zone, and Bridgman. The up-to-date reference contains detailed technical and applied information, especially on the difficulty of crystal shape control. Including practical examples and software applications, this book provides both theoretical and experimental sections. Edited by a well-respected academic with over twenty-five years of experience in this field, the text is an excellent resource for professionals in crystal growth as well as for students in understanding the fundamentals and the technology of crystal growth.…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 19.23MB
- Charge Transport in Disordered Solids with Applications in Electronics (eBook, PDF)228,99 €
- Rainer WeschePhysical Properties of High-Temperature Superconductors (eBook, PDF)139,99 €
- Pedro BarquinhaTransparent Oxide Electronics (eBook, PDF)121,99 €
- Adrian KitaiPrinciples of Solar Cells, LEDs and Related Devices (eBook, PDF)75,99 €
- John N. LalenaPrinciples of Inorganic Materials Design (eBook, PDF)170,99 €
- Budhika G. MendisElectron Beam-Specimen Interactions and Simulation Methods in Microscopy (eBook, PDF)104,99 €
- Yuan-Hua LinOxide Thermoelectric Materials (eBook, PDF)124,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 566
- Erscheinungstermin: 15. März 2010
- Englisch
- ISBN-13: 9781444320213
- Artikelnr.: 37339326
- Verlag: John Wiley & Sons
- Seitenzahl: 566
- Erscheinungstermin: 15. März 2010
- Englisch
- ISBN-13: 9781444320213
- Artikelnr.: 37339326
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
-PD). 5.4.1 Crucible-Melt Relation During Crystal Growth by the
-PD Technique. 5.4.2 Examples of Crystals Grown by the
-PD Technique. 5.5 Conclusions. References. 6 Vertical Bridgman Technique and Dewetting (Thierry Duffar and Lamine Sylla). 6.1 Peculiarities and Drawbacks of the Bridgman Processes. 6.1.1 Thermal Interface Curvature. 6.1.2 Melt-Crystal-Crucible Contact Angle. 6.1.3 Crystal-Crucible Adhesion and Thermomechanical Detachment. 6.1.4 Spurious Nucleation on Crucible Walls. 6.2 Full Encapsulation. 6.2.1 Introduction. 6.2.2 LiCl-KCl Encapsulant for Antimonides. 6.2.3 B2O3 Encapsulant. 6.2.4 Conclusion. 6.3 The Dewetting Process: a Modified VB Technique. 6.3.1 Introduction. 6.3.2 Dewetting in Microgravity. 6.3.3 Dewetting in Normal Gravity. 6.3.4 Theoretical Models of Dewetting. 6.3.5 Stability Analysis. 6.4 Conclusion and Outlook. References. 7 Marangoni Convection in Crystal Growth (Arne Cröll, Taketoshi Hibiya, Suguru Shiratori, Koichi Kakimoto and Lijun Liu). 7.1 Thermocapillary Convection in Float Zones. 7.1.1 Model Materials. 7.1.2 Semiconductors and Metals. 7.1.3 Effect of Oxygen Partial Pressure on Thermocapillary Flow in Si. 7.1.4 Fluid Dynamics of Thermocapillary Flow in Half-Zones. 7.1.5 Full Float Zones. 7.1.6 The Critical Marangoni Number Mac2. 7.1.7 Controlling Thermocapillary Convection in Float Zones. 7.2 Thermocapillary Convection in Cz Crystal Growth of Si. 7.2.1 Introduction. 7.2.2 Surface Tension-Driven Flow in Cz Growth. 7.2.3 Numerical Model. 7.2.4 Calculation Results. 7.2.5 Summary of Cz Results. 7.3 Thermocapillary Convection in EFG Set-Ups. 7.4 Thermocapillary Convection in Bridgman and Related Set-Ups. 7.5 Solutocapillary Convection. References. 8 Mathematical and Numerical Analysis of Capillarity Problems and Processes (Liliana Braescu, Simona Epure and Thierry Duffar). 8.1 Mathematical Formulation of the Capillary Problem. 8.1.1 Boundary Value Problems for the Young-Laplace Equation. 8.1.2 Initial and Boundary Conditions of the Meniscus Problem. 8.1.3 Approximate Solutions of the Axisymmetric Meniscus Problem. 8.2 Analytical and Numerical Solutions for the Meniscus Equation in the Cz Method. 8.3 Analytical and Numerical Solutions for the Meniscus Equation in the EFG Method. 8.3.1 Sheets. 8.3.2 Cylindrical Crystals. 8.4 Analytical and Numerical Solutions for the Meniscus Equation in the Dewetted Bridgman Method. 8.4.1 Zero Gravity. 8.4.2 Normal Gravity. 8.5 Conclusions. Appendix: Runge-Kutta Methods. A.1 Fourth-Order Runge-Kutta Method (RK4). A.2 Rkfixed and Rkadapt Routines for Solving IVP. References. Index.
-PD). 5.4.1 Crucible-Melt Relation During Crystal Growth by the
-PD Technique. 5.4.2 Examples of Crystals Grown by the
-PD Technique. 5.5 Conclusions. References. 6 Vertical Bridgman Technique and Dewetting (Thierry Duffar and Lamine Sylla). 6.1 Peculiarities and Drawbacks of the Bridgman Processes. 6.1.1 Thermal Interface Curvature. 6.1.2 Melt-Crystal-Crucible Contact Angle. 6.1.3 Crystal-Crucible Adhesion and Thermomechanical Detachment. 6.1.4 Spurious Nucleation on Crucible Walls. 6.2 Full Encapsulation. 6.2.1 Introduction. 6.2.2 LiCl-KCl Encapsulant for Antimonides. 6.2.3 B2O3 Encapsulant. 6.2.4 Conclusion. 6.3 The Dewetting Process: a Modified VB Technique. 6.3.1 Introduction. 6.3.2 Dewetting in Microgravity. 6.3.3 Dewetting in Normal Gravity. 6.3.4 Theoretical Models of Dewetting. 6.3.5 Stability Analysis. 6.4 Conclusion and Outlook. References. 7 Marangoni Convection in Crystal Growth (Arne Cröll, Taketoshi Hibiya, Suguru Shiratori, Koichi Kakimoto and Lijun Liu). 7.1 Thermocapillary Convection in Float Zones. 7.1.1 Model Materials. 7.1.2 Semiconductors and Metals. 7.1.3 Effect of Oxygen Partial Pressure on Thermocapillary Flow in Si. 7.1.4 Fluid Dynamics of Thermocapillary Flow in Half-Zones. 7.1.5 Full Float Zones. 7.1.6 The Critical Marangoni Number Mac2. 7.1.7 Controlling Thermocapillary Convection in Float Zones. 7.2 Thermocapillary Convection in Cz Crystal Growth of Si. 7.2.1 Introduction. 7.2.2 Surface Tension-Driven Flow in Cz Growth. 7.2.3 Numerical Model. 7.2.4 Calculation Results. 7.2.5 Summary of Cz Results. 7.3 Thermocapillary Convection in EFG Set-Ups. 7.4 Thermocapillary Convection in Bridgman and Related Set-Ups. 7.5 Solutocapillary Convection. References. 8 Mathematical and Numerical Analysis of Capillarity Problems and Processes (Liliana Braescu, Simona Epure and Thierry Duffar). 8.1 Mathematical Formulation of the Capillary Problem. 8.1.1 Boundary Value Problems for the Young-Laplace Equation. 8.1.2 Initial and Boundary Conditions of the Meniscus Problem. 8.1.3 Approximate Solutions of the Axisymmetric Meniscus Problem. 8.2 Analytical and Numerical Solutions for the Meniscus Equation in the Cz Method. 8.3 Analytical and Numerical Solutions for the Meniscus Equation in the EFG Method. 8.3.1 Sheets. 8.3.2 Cylindrical Crystals. 8.4 Analytical and Numerical Solutions for the Meniscus Equation in the Dewetted Bridgman Method. 8.4.1 Zero Gravity. 8.4.2 Normal Gravity. 8.5 Conclusions. Appendix: Runge-Kutta Methods. A.1 Fourth-Order Runge-Kutta Method (RK4). A.2 Rkfixed and Rkadapt Routines for Solving IVP. References. Index.