Fujio Yamaguchi
Curves and Surfaces in Computer Aided Geometric Design (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Fujio Yamaguchi
Curves and Surfaces in Computer Aided Geometric Design (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 21.58MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 378
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642489525
- Artikelnr.: 53118811
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
0. Mathematical Description of Shape Information.- 0.1 Description and Transmission of Shape Information.- 0.2 Processing and Analysis of Shapes.- 0.3 Mathematical Description of Free Form Shapes.- 0.4 The Development of Mathematical Descriptions of Free Form Curves and Surfaces.- References.- 1. Basic Theory of Curves and Surfaces.- 1.1 General.- 1.2 Curve Theory.- 1.3 Theory of Surfaces.- References.- 2. Lagrange Interpolation.- 2.1 Lagrange Interpolation Curves.- 2.2 Expression in Terms of Divided Differences.- References.- 3. Hermite Interpolation.- 3.1 Hermite Interpolation.- 3.2 Curves.- 3.3 Surfaces.- References.- 4. Spline Interpolation.- 4.1 Splines.- 4.2 Spline Functions.- 4.3 Mathematical Representation of Spline Functions.- 4.4 Natural Splines.- 4.5 Natural Splines and the Minimum Interpolation Property.- 4.6 Smoothing Splines.- 4.7 Parametric Spline Curves.- 4.8 End Conditions on a Spline Curve.- 4.9 Cubic Spline Curves Using Circular Arc Length.- 4.10 B-Splines.- 4.11 Generation of Spline Surfaces.- References.- 5. The Bernstein Approximation.- 5.1 Curves.- 5.2 Surfaces.- References.- 6. The B-Spline Approximation.- 6.1 Uniform Cubic B-Spline Curves.- 6.2 Uniform Bi-cubic B-Spline Surfaces.- 6.3 B-Spline Functions and Their Properties (1).- 6.4 B-Spline Functions and Their Properties (2).- 6.5 Derivation of B-Spline Functions.- 6.6 B-Spline Curve Type (1).- 6.7 B-Spline Curve Type (2).- 6.8 Recursive Calculation of B-Spline Functions.- 6.9 B-Spline Functions and Their Properties (3).- 6.10 B-Spline Curve Type (3).- 6.11 Differentiation of B-Spline Curves.- 6.12 Geometrical Properties of B-Spline Curves.- 6.13 Determination of a Point on a Curve by Linear Operations.- 6.14 Insertion of Knots.- 6.15 Curve Generation by Geometrical Processing.- 6.16 Interpolation of a Sequence of Points with a B-Spline Curve.- 6.17 Matrix Expression of B-Spline Curves.- 6.18 Expression of the Functions C0,0(t), C0,1(t), C1,0(t) and C1,1(t) by B-Spline Functions.- 6.19 General B-Spline Surfaces.- References.- 7. The Rational Polynomial Curves.- 7.1 Derivation of Parametric Conic Section Curves.- 7.2 Classification of Conic Section Curves.- 7.3 Parabolas.- 7.4 Circular Arc Formulas.- 7.5 Cubic/Cubic Rational Polynomial Curves.- 7.6 T-Conic Curves.- References.- Appendix A: Vector Expression of Simple Geometrical Relations.
0. Mathematical Description of Shape Information.- 0.1 Description and Transmission of Shape Information.- 0.2 Processing and Analysis of Shapes.- 0.3 Mathematical Description of Free Form Shapes.- 0.4 The Development of Mathematical Descriptions of Free Form Curves and Surfaces.- References.- 1. Basic Theory of Curves and Surfaces.- 1.1 General.- 1.2 Curve Theory.- 1.3 Theory of Surfaces.- References.- 2. Lagrange Interpolation.- 2.1 Lagrange Interpolation Curves.- 2.2 Expression in Terms of Divided Differences.- References.- 3. Hermite Interpolation.- 3.1 Hermite Interpolation.- 3.2 Curves.- 3.3 Surfaces.- References.- 4. Spline Interpolation.- 4.1 Splines.- 4.2 Spline Functions.- 4.3 Mathematical Representation of Spline Functions.- 4.4 Natural Splines.- 4.5 Natural Splines and the Minimum Interpolation Property.- 4.6 Smoothing Splines.- 4.7 Parametric Spline Curves.- 4.8 End Conditions on a Spline Curve.- 4.9 Cubic Spline Curves Using Circular Arc Length.- 4.10 B-Splines.- 4.11 Generation of Spline Surfaces.- References.- 5. The Bernstein Approximation.- 5.1 Curves.- 5.2 Surfaces.- References.- 6. The B-Spline Approximation.- 6.1 Uniform Cubic B-Spline Curves.- 6.2 Uniform Bi-cubic B-Spline Surfaces.- 6.3 B-Spline Functions and Their Properties (1).- 6.4 B-Spline Functions and Their Properties (2).- 6.5 Derivation of B-Spline Functions.- 6.6 B-Spline Curve Type (1).- 6.7 B-Spline Curve Type (2).- 6.8 Recursive Calculation of B-Spline Functions.- 6.9 B-Spline Functions and Their Properties (3).- 6.10 B-Spline Curve Type (3).- 6.11 Differentiation of B-Spline Curves.- 6.12 Geometrical Properties of B-Spline Curves.- 6.13 Determination of a Point on a Curve by Linear Operations.- 6.14 Insertion of Knots.- 6.15 Curve Generation by Geometrical Processing.- 6.16 Interpolation of a Sequence of Points with a B-Spline Curve.- 6.17 Matrix Expression of B-Spline Curves.- 6.18 Expression of the Functions C0,0(t), C0,1(t), C1,0(t) and C1,1(t) by B-Spline Functions.- 6.19 General B-Spline Surfaces.- References.- 7. The Rational Polynomial Curves.- 7.1 Derivation of Parametric Conic Section Curves.- 7.2 Classification of Conic Section Curves.- 7.3 Parabolas.- 7.4 Circular Arc Formulas.- 7.5 Cubic/Cubic Rational Polynomial Curves.- 7.6 T-Conic Curves.- References.- Appendix A: Vector Expression of Simple Geometrical Relations.