38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
Als Download kaufen
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
19 °P sammeln
Jetzt verschenken
38,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
19 °P sammeln
  • Format: PDF

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla…mehr

Produktbeschreibung
Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Rezensionen
From the reviews:
"The authors describe elliptic (sphere), flat (cylinder, cone) and hyperbolic (pseudosphere) geometries, construct and study several projections and conformal mappings. ... The book can be recommended to everybody who teaches mathematics in high school, to students in mathematics, physics or engineering, to researchers in didactics of mathematics, especially of geometry, and to all those who want to understand that the Euclidean geometry is not enough to describe the universe." (Marian Ioan Munteanu, zbMATH, Vol. 1272, 2013)