Noted for its model-comparison approach and unified framework based on the general linear model (GLM), this classic text provides readers with a greater understanding of a variety of statistical procedures including analysis of variance (ANOVA) and regression.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
'Data Analysis is a rare graduate statistics book that combines truth (scholarly strength) and beauty (a clear approach that builds from one chapter to the next). The book's model comparisons give students a systematic way to think deeply about their hypotheses as well as the flexibility to answer meaningful questions about their own data that most textbooks address only briefly if at all.' - Deborah Clawson, Catholic University of America, USA
'Most introductory statistics texts teach students how to apply specific tests in specific circumstances, with little room for generalizing knowledge to new settings. Data Analysis instead teaches students how to think like scientists, always framing hypothesis tests as formal comparisons between competing explanations. The first two editions were ahead of their time in their philosophical approach to data analysis, and this new edition retains and expands their unifying framework.' - Kristopher J. Preacher, Vanderbilt University, USA
'I am delighted that both logistic regression and multilevel modeling are now included. Both topics are introduced using the authors' clear, useful, and integrative approach. Not only does the new material help me to teach this to my students better, it also helps me to understand the topics better!' - J. Michael Bailey, Northwestern University, USA
'Most introductory statistics texts teach students how to apply specific tests in specific circumstances, with little room for generalizing knowledge to new settings. Data Analysis instead teaches students how to think like scientists, always framing hypothesis tests as formal comparisons between competing explanations. The first two editions were ahead of their time in their philosophical approach to data analysis, and this new edition retains and expands their unifying framework.' - Kristopher J. Preacher, Vanderbilt University, USA
'I am delighted that both logistic regression and multilevel modeling are now included. Both topics are introduced using the authors' clear, useful, and integrative approach. Not only does the new material help me to teach this to my students better, it also helps me to understand the topics better!' - J. Michael Bailey, Northwestern University, USA