Chandril Ghosh
Data Analysis with Machine Learning for Psychologists (eBook, PDF)
Crash Course to Learn Python 3 and Machine Learning in 10 hours
53,49 €
inkl. MwSt.
Sofort per Download lieferbar
Chandril Ghosh
Data Analysis with Machine Learning for Psychologists (eBook, PDF)
Crash Course to Learn Python 3 and Machine Learning in 10 hours
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The power of data drives the digital economy of the 21st century. It has been argued that data is as vital a resource as oil was during the industrial revolution. An upward trend in the number of research publications using machine learning in some of the top journals in combination with an increasing number of academic recruiters within psychology asking for Python knowledge from applicants indicates a growing demand for these skills in the market.
While there are plenty of books covering data science, rarely, if ever, books in the market address the need of social science students with no…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.36MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Hojjatollah FarahaniAn Introduction to Artificial Psychology (eBook, PDF)181,89 €
- Tomasz WitkowskiShaping Psychology (eBook, PDF)32,09 €
- Academia and the World Beyond (eBook, PDF)28,88 €
- Dale PurvesWhy Brains Don't Compute (eBook, PDF)85,59 €
- Matthew N. O. SadikuA Primer on Multiple Intelligences (eBook, PDF)139,09 €
- Cristiano CastelfranchiA Theory of Tutelary Relationships (eBook, PDF)128,39 €
- C. Raymond LakeBipolar for Psychotherapists and Their Clients (eBook, PDF)139,09 €
-
-
-
The power of data drives the digital economy of the 21st century. It has been argued that data is as vital a resource as oil was during the industrial revolution. An upward trend in the number of research publications using machine learning in some of the top journals in combination with an increasing number of academic recruiters within psychology asking for Python knowledge from applicants indicates a growing demand for these skills in the market.
While there are plenty of books covering data science, rarely, if ever, books in the market address the need of social science students with no computer science background. They are typically written by engineers or computer scientists for people of their discipline. As a result, often such books are filled with technical jargon and examples irrelevant to psychological studies or projects. In contrast, this book was written by a psychologist in a simple, easy-to-understand way that is brief and accessible. The aim for this book was to make the learning experience on this topic as smooth as possible for psychology students/researchers with no background in programming or data science.
Completing this book will also open up an enormous amount of possibilities for quantitative researchers in psychological science, as it will enable them to explore newer types of research questions.
While there are plenty of books covering data science, rarely, if ever, books in the market address the need of social science students with no computer science background. They are typically written by engineers or computer scientists for people of their discipline. As a result, often such books are filled with technical jargon and examples irrelevant to psychological studies or projects. In contrast, this book was written by a psychologist in a simple, easy-to-understand way that is brief and accessible. The aim for this book was to make the learning experience on this topic as smooth as possible for psychology students/researchers with no background in programming or data science.
Completing this book will also open up an enormous amount of possibilities for quantitative researchers in psychological science, as it will enable them to explore newer types of research questions.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Erscheinungstermin: 17. Oktober 2022
- Englisch
- ISBN-13: 9783031146343
- Artikelnr.: 66202196
- Verlag: Springer International Publishing
- Erscheinungstermin: 17. Oktober 2022
- Englisch
- ISBN-13: 9783031146343
- Artikelnr.: 66202196
Dr Chandril Ghosh is a UK-based chartered psychologist and is currently working as the Lecturer in Clinical/Counselling Psychology at the Bath Spa University. He completed his BSc in Psychology (honours) and MSc in Clinical Psychology from India. After completing his MSc, Ghosh began to study machine learning and python programming through books and online materials on the subject. He had no background or prior experience with coding or computer science back then. During his doctoral studies, he utilised his knowledge on the subject to employ machine learning techniques to explore psychopathology. Around the same time, he was hired multiple times to design and deliver a crash course on python 3 and machine learning for postgraduate students at the Queen’s University Belfast. Furthermore, he also runs online courses on the subject outside the University, and gets students from about 56 countries. This book is a product of an accumulation of his hundreds of hours of teaching and feedback from students with social science backgrounds.
Introduction.- Step 1:Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.
Introduction.- Step 1:Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.
Introduction.- Step 1:Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.
Introduction.- Step 1:Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note. Python Programming.- Step 2:Data Pre-Processing.- Step 3: Data Analysis with Machine Learning.- End Note.