Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A comprehensive and accessible roadmap to performing data analytics in the AWS cloud In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS , accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you'll explore every relevant aspect of data analytics-from data engineering to analysis, business intelligence, DevOps, and MLOps-as you discover how to integrate machine learning predictions with analytics engines and…mehr
A comprehensive and accessible roadmap to performing data analytics in the AWS cloud
In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS, accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you'll explore every relevant aspect of data analytics-from data engineering to analysis, business intelligence, DevOps, and MLOps-as you discover how to integrate machine learning predictions with analytics engines and visualization tools.
You'll also find:
Real-world use cases of AWS architectures that demystify the applications of data analytics
Accessible introductions to data acquisition, importation, storage, visualization, and reporting
Expert insights into serverless data engineering and how to use it to reduce overhead and costs, improve stability, and simplify maintenance
A can't-miss for data architects, analysts, engineers and technical professionals, Data Analytics in the AWS Cloud will also earn a place on the bookshelves of business leaders seeking a better understanding of data analytics on the AWS cloud platform.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
GIONATA "JOE" MINICHINO is Principal Software Engineer and Data Architect on the Data & Analytics Team at Teamwork. He specializes in cloud computing, machine/deep learning, and artificial intelligence and designs end-to-end Amazon Web Services pipelines that move large quantities of diverse data for analysis and visualization.
Inhaltsangabe
Introduction xxiii
Chapter 1 AWS Data Lakes and Analytics Technology Overview 1
Why AWS? 1
What Does a Data Lake Look Like in AWS? 2
Analytics on AWS 3
Skills Required to Build and Maintain an AWS Analytics Pipeline 3
Chapter 2 The Path to Analytics: Setting Up a Data and Analytics Team 5
The Data Vision 6
Support 6
DA Team Roles 7
Early Stage Roles 7
Team Lead 8
Data Architect 8
Data Engineer 8
Data Analyst 9
Maturity Stage Roles 9
Data Scientist 9
Cloud Engineer 10
Business Intelligence (BI) Developer 10
Machine Learning Engineer 10
Business Analyst 11
Niche Roles 11
Analytics Flow at a Process Level 12
Workflow Methodology 12
The DA Team Mantra: "Automate Everything" 14
Analytics Models in the Wild: Centralized, Distributed, Center of Excellence 15
Centralized 15
Distributed 16
Center of Excellence 16
Summary 17
Chapter 3 Working on AWS 19
Accessing AWS 20
Everything Is a Resource 21
S3: An Important Exception 21
IAM: Policies, Roles, and Users 22
Policies 22
Identity- Based Policies 24
Resource- Based Policies 25
Roles 25
Users and User Groups 25
Summarizing IAM 26
Working with the Web Console 26
The AWS Command- Line Interface 29
Installing AWS cli 29
Linux Installation 30
macOS Installation 30
Windows 31
Configuring AWS cli 31
A Note on Region 33
Setting Individual Parameters 33
Using Profiles and Configuration Files 33
Final Notes on Configuration 36
Using the AWS cli 36
Using Skeletons and File Inputs 39
Cleaning Up! 43
Infrastructure- as- Code: CloudFormation and Terraform 44
CloudFormation 44
CloudFormation Stacks 46
CloudFormation Template Anatomy 47
CloudFormation Changesets 52
Getting Stack Information 55
Cleaning Up Again 57
CloudFormation Conclusions 58
Terraform 58
Coding Style 58
Modularity 59
Limitations 59
Terraform vs. CloudFormation 60
Infrastructure- as- Code: CDK, Pulumi, Cloudcraft, and Other Solutions 60
AWS CDK 60
Pulumi 62
Cloudcraft 62
Infrastructure Management Conclusions 63
Chapter 4 Serverless Computing and Data Engineering 65