Data Driven Science for Clinically Actionable Knowledge in Diseases (eBook, PDF)
Redaktion: Catchpoole, Daniel; Nguyen, Quang Vinh; Kennedy, Paul; Simoff, Simeon
46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
46,95 €
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Data Driven Science for Clinically Actionable Knowledge in Diseases (eBook, PDF)
Redaktion: Catchpoole, Daniel; Nguyen, Quang Vinh; Kennedy, Paul; Simoff, Simeon
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Computational and visual analytics enables effective exploration and sense making of large and complex data through the deployment of appropriate data science methods, meaningful visualization and human-information interaction.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.69MB
Andere Kunden interessierten sich auch für
- Data Driven Science for Clinically Actionable Knowledge in Diseases (eBook, ePUB)46,95 €
- Catherine Arnott SmithConsumer Health Informatics (eBook, PDF)47,95 €
- Anthony Matthew HopperPreparing Healthcare Workers for an AI-Driven Workplace (eBook, PDF)31,95 €
- Nilmini WickramasingheDigital Health (eBook, PDF)46,95 €
- Catherine Arnott SmithConsumer Health Informatics (eBook, ePUB)47,95 €
- Machine Learning in Medicine (eBook, PDF)78,95 €
- Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications (eBook, PDF)48,95 €
-
-
-
Computational and visual analytics enables effective exploration and sense making of large and complex data through the deployment of appropriate data science methods, meaningful visualization and human-information interaction.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 6. Dezember 2023
- Englisch
- ISBN-13: 9781003800286
- Artikelnr.: 69103468
- Verlag: Taylor & Francis
- Seitenzahl: 254
- Erscheinungstermin: 6. Dezember 2023
- Englisch
- ISBN-13: 9781003800286
- Artikelnr.: 69103468
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Daniel R. Catchpoole is the Group Leader of the Tumour Bank, Children's Cancer Research Unit, Children's Hospital, Westmead, Australia. He is also affiliated with the Faculty of Medicine at the University of Sydney and the Department of Information Technology at the University of Technology Sydney. Simeon J. Simoff is the Cluster Pro Vice Chancellor (Science, Technology, Engineering and Mathematics) and Dean of the School of Computer, Data and Mathematical Sciences at Western Sydney University. Paul J. Kennedy is the Director of the Biomedical Data Science Laboratory at the Australia Artificial Intelligence Institute and the Head of Computer Science in the Faculty of Engineering and Information Technology at the University of Technology Sydney. Quang Vinh Nguyen is the Director of Academic Programs for Postgraduate ICT at the School of Computer, Data and Mathematical Sciences and the MARCS Institute for Brain, Behaviour and Development at Western Sydney University.
Chapter 1. Understanding the Impact of Patient Journey Patterns on Health
Outcomes for Patients with Diabetes. Chapter 2. COVID-19 Impact Analysis on
Patients with Complex Health Conditions: A Literature Review. Chapter 3.
Estimating the Relative Contribution of Transmission to the Prevalence of
Drug Resistance in Tuberculosis. Chapter 4. A Novel Diagnosis System for
Parkinson's Disease Based on Ensemble Random Forest. Chapter 5.
Harmonization of Brain Data across Sites and Scanners. Chapter 6.
Feature-Ranking Methods for RNA Sequencing Data. Chapter 7. Graph Neural
Networks for Brain Tumour Segmentation. Chapter 8. Biomedical Data
Analytics and Visualisation-A Methodological Framework. Chapter 9.
Visualisation for Explainable Machine Learning in Biomedical Data Analysis.
Chapter 10. Visual Communication and Trust in the Health Domain.
Outcomes for Patients with Diabetes. Chapter 2. COVID-19 Impact Analysis on
Patients with Complex Health Conditions: A Literature Review. Chapter 3.
Estimating the Relative Contribution of Transmission to the Prevalence of
Drug Resistance in Tuberculosis. Chapter 4. A Novel Diagnosis System for
Parkinson's Disease Based on Ensemble Random Forest. Chapter 5.
Harmonization of Brain Data across Sites and Scanners. Chapter 6.
Feature-Ranking Methods for RNA Sequencing Data. Chapter 7. Graph Neural
Networks for Brain Tumour Segmentation. Chapter 8. Biomedical Data
Analytics and Visualisation-A Methodological Framework. Chapter 9.
Visualisation for Explainable Machine Learning in Biomedical Data Analysis.
Chapter 10. Visual Communication and Trust in the Health Domain.
Chapter 1. Understanding the Impact of Patient Journey Patterns on Health
Outcomes for Patients with Diabetes. Chapter 2. COVID-19 Impact Analysis on
Patients with Complex Health Conditions: A Literature Review. Chapter 3.
Estimating the Relative Contribution of Transmission to the Prevalence of
Drug Resistance in Tuberculosis. Chapter 4. A Novel Diagnosis System for
Parkinson's Disease Based on Ensemble Random Forest. Chapter 5.
Harmonization of Brain Data across Sites and Scanners. Chapter 6.
Feature-Ranking Methods for RNA Sequencing Data. Chapter 7. Graph Neural
Networks for Brain Tumour Segmentation. Chapter 8. Biomedical Data
Analytics and Visualisation-A Methodological Framework. Chapter 9.
Visualisation for Explainable Machine Learning in Biomedical Data Analysis.
Chapter 10. Visual Communication and Trust in the Health Domain.
Outcomes for Patients with Diabetes. Chapter 2. COVID-19 Impact Analysis on
Patients with Complex Health Conditions: A Literature Review. Chapter 3.
Estimating the Relative Contribution of Transmission to the Prevalence of
Drug Resistance in Tuberculosis. Chapter 4. A Novel Diagnosis System for
Parkinson's Disease Based on Ensemble Random Forest. Chapter 5.
Harmonization of Brain Data across Sites and Scanners. Chapter 6.
Feature-Ranking Methods for RNA Sequencing Data. Chapter 7. Graph Neural
Networks for Brain Tumour Segmentation. Chapter 8. Biomedical Data
Analytics and Visualisation-A Methodological Framework. Chapter 9.
Visualisation for Explainable Machine Learning in Biomedical Data Analysis.
Chapter 10. Visual Communication and Trust in the Health Domain.