Data Mining: Foundations and Intelligent Paradigms (eBook, PDF)
Volume 1: Clustering, Association and Classification
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
Data Mining: Foundations and Intelligent Paradigms (eBook, PDF)
Volume 1: Clustering, Association and Classification
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.58MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Data Mining: Foundations and Intelligent Paradigms (eBook, PDF)110,95 €
- Data Mining: Foundations and Intelligent Paradigms (eBook, PDF)110,95 €
- Machine Learning Paradigms (eBook, PDF)149,79 €
- Dionisios N. SotiropoulosMachine Learning Paradigms (eBook, PDF)96,29 €
- Marina RestaComputational Intelligence Paradigms in Economic and Financial Decision Making (eBook, PDF)96,29 €
- Aristomenis S. LampropoulosMachine Learning Paradigms (eBook, PDF)96,29 €
- Foundations of Intelligent Systems (eBook, PDF)385,95 €
-
-
-
There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin
- Erscheinungstermin: 9. November 2011
- Englisch
- ISBN-13: 9783642231667
- Artikelnr.: 37369379
- Verlag: Springer Berlin
- Erscheinungstermin: 9. November 2011
- Englisch
- ISBN-13: 9783642231667
- Artikelnr.: 37369379
Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.
Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.
Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.
Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.