Doctoral Thesis / Dissertation from the year 2020 in the subject Computer Science - Commercial Information Technology, Symbiosis International University, language: English, abstract: Data mining is coined one of the steps while discovering insights from large amounts of data which may be stored in databases, data warehouses, or in other information repositories. Data mining is now playing a significant role in seeking a decision support to draw higher profits by the modern business world. Various researchers studied the benefits of data mining processes and its adoption by business organizations, but very few of them have discussed the success factors of decision support projects. The Research Hypothesis states the involvement of the decision tree while adopting accuracy of classification and while emphasizing the impact factor or importance of the attributes rather than the information gain. The concept of involvement of impact factor rather than just accuracy can be utilized in developing the new algorithm whose performance improves over the existing algorithms. We proposed a new algorithm which improves accuracy and contributing effectively in decision tree learning. We presented an algorithm that resolves the above stated problem of confliction of class. We have introduced the impact factor and classified impact factor to resolve the conflict situation. We have used data mining technique in facilitating the decision support with improved performance over its existing companion. We have also addressed the unique problem which have not been addressed before. Definitely, the fusion of data mining and decision support can contribute to problem-solving by enabling the vast hidden knowledge from data and knowledge received from experts. We have discussed a lot of work done in the field of decision support and hierarchical multi-attribute decision models. Ample amount of algorithms are available which are used to classify the data in datasets. Most algorithms use the concept of information gain for classification purpose. Some Lacking areas also exist. There is a need for an ideal algorithm for large datasets. There is a need for handling the missing values. There is a need for removing attribute bias towards choosing a random class when a conflict occurs. There is a need for decision support model which takes the advantages of hierarchical multi-attribute classification algorithms.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.