Zdravko Markov, Daniel T. Larose
Data Mining the Web (eBook, PDF)
Uncovering Patterns in Web Content, Structure, and Usage
96,99 €
96,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
96,99 €
Als Download kaufen
96,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
96,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Zdravko Markov, Daniel T. Larose
Data Mining the Web (eBook, PDF)
Uncovering Patterns in Web Content, Structure, and Usage
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.91MB
Andere Kunden interessierten sich auch für
- Roger BilisolyPractical Text Mining with Perl (eBook, PDF)112,99 €
- Knowledge Discovery in Bioinformatics (eBook, PDF)122,99 €
- Daniel T. LaroseData Mining and Predictive Analytics (eBook, PDF)111,99 €
- Darius M. DziudaData Mining for Genomics and Proteomics (eBook, PDF)87,99 €
- Roger BilisolyPractical Text Mining with Perl (eBook, ePUB)112,99 €
- Claudio CarpinetoConcept Data Analysis (eBook, PDF)107,99 €
- Paulraj PonniahData Modeling Fundamentals (eBook, PDF)136,99 €
-
-
-
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 20. August 2007
- Englisch
- ISBN-13: 9780470108086
- Artikelnr.: 37290395
- Verlag: John Wiley & Sons
- Seitenzahl: 240
- Erscheinungstermin: 20. August 2007
- Englisch
- ISBN-13: 9780470108086
- Artikelnr.: 37290395
Zdravko Markov, PhD, is Associate Professor of Computer Science at Central Connecticut State University. The author of three textbooks, Dr. Markov teaches undergraduate and graduate courses in computer science and artificial intelligence. He is currently a Principal Investigator (PI) in a National Science Foundation-funded project designed to introduce machine learning to undergraduates. Daniel T. Larose, PhD, is Professor of Statistics in the Department of Mathematical Sciences at Central Connecticut State University. He is the author of three data mining books and a forthcoming textbook in undergraduate statistics. He developed and directs CCSU's DataMining@CCSU programs.
PREFACE.
PART I: WEB STRUCTURE MINING.
1 INFORMATION RETRIEVAL AND WEB SEARCH.
Web Challenges.
Web Search Engines.
Topic Directories.
Semantic Web.
Crawling the Web.
Web Basics.
Web Crawlers.
Indexing and Keyword Search.
Document Representation.
Implementation Considerations.
Relevance Ranking.
Advanced Text Search.
Using the HTML Structure in Keyword Search.
Evaluating Search Quality.
Similarity Search.
Cosine Similarity.
Jaccard Similarity.
Document Resemblance.
References.
Exercises.
2 HYPERLINK-BASED RANKING.
Introduction.
Social Networks Analysis.
PageRank.
Authorities and Hubs.
Link-Based Similarity Search.
Enhanced Techniques for Page Ranking.
References.
Exercises.
PART II: WEB CONTENT MINING.
3 CLUSTERING.
Introduction.
Hierarchical Agglomerative Clustering.
k-Means Clustering.
Probabilty-Based Clustering.
Finite Mixture Problem.
Classification Problem.
Clustering Problem.
Collaborative Filtering (Recommender Systems).
References.
Exercises.
4 EVALUATING CLUSTERING.
Approaches to Evaluating Clustering.
Similarity-Based Criterion Functions.
Probabilistic Criterion Functions.
MDL-Based Model and Feature Evaluation.
Minimum Description Length Principle.
MDL-Based Model Evaluation.
Feature Selection.
Classes-to-Clusters Evaluation.
Precision, Recall, and F-Measure.
Entropy.
References.
Exercises.
5 CLASSIFICATION.
General Setting and Evaluation Techniques.
Nearest-Neighbor Algorithm.
Feature Selection.
Naive Bayes Algorithm.
Numerical Approaches.
Relational Learning.
References.
Exercises.
PART III: WEB USAGE MINING.
6 INTRODUCTION TO WEB USAGE MINING.
Definition of Web Usage Mining.
Cross-Industry Standard Process for Data Mining.
Clickstream Analysis.
Web Server Log Files.
Remote Host Field.
Date/Time Field.
HTTP Request Field.
Status Code Field.
Transfer Volume (Bytes) Field.
Common Log Format.
Identification Field.
Authuser Field.
Extended Common Log Format.
Referrer Field.
User Agent Field.
Example of a Web Log Record.
Microsoft IIS Log Format.
Auxiliary Information.
References.
Exercises.
7 PREPROCESSING FOR WEB USAGE MINING.
Need for Preprocessing the Data.
Data Cleaning and Filtering.
Page Extension Exploration and Filtering.
De-Spidering the Web Log File.
User Identification.
Session Identification.
Path Completion.
Directories and the Basket Transformation.
Further Data Preprocessing Steps.
References.
Exercises.
8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING.
Introduction.
Number of Visit Actions.
Session Duration.
Relationship between Visit Actions and Session Duration.
Average Time per Page.
Duration for Individual Pages.
References.
Exercises.
9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, AND
CLASSIFICATION.
Introduction.
Modeling Methodology.
Definition of Clustering.
The BIRCH Clustering Algorithm.
Affinity Analysis and the A Priori Algorithm.
Discretizing the Numerical Variables: Binning.
Applying the A Priori Algorithm to the CCSU Web Log Data.
Classification and Regression Trees.
The C4.5 Algorithm.
References.
Exercises.
INDEX.
PART I: WEB STRUCTURE MINING.
1 INFORMATION RETRIEVAL AND WEB SEARCH.
Web Challenges.
Web Search Engines.
Topic Directories.
Semantic Web.
Crawling the Web.
Web Basics.
Web Crawlers.
Indexing and Keyword Search.
Document Representation.
Implementation Considerations.
Relevance Ranking.
Advanced Text Search.
Using the HTML Structure in Keyword Search.
Evaluating Search Quality.
Similarity Search.
Cosine Similarity.
Jaccard Similarity.
Document Resemblance.
References.
Exercises.
2 HYPERLINK-BASED RANKING.
Introduction.
Social Networks Analysis.
PageRank.
Authorities and Hubs.
Link-Based Similarity Search.
Enhanced Techniques for Page Ranking.
References.
Exercises.
PART II: WEB CONTENT MINING.
3 CLUSTERING.
Introduction.
Hierarchical Agglomerative Clustering.
k-Means Clustering.
Probabilty-Based Clustering.
Finite Mixture Problem.
Classification Problem.
Clustering Problem.
Collaborative Filtering (Recommender Systems).
References.
Exercises.
4 EVALUATING CLUSTERING.
Approaches to Evaluating Clustering.
Similarity-Based Criterion Functions.
Probabilistic Criterion Functions.
MDL-Based Model and Feature Evaluation.
Minimum Description Length Principle.
MDL-Based Model Evaluation.
Feature Selection.
Classes-to-Clusters Evaluation.
Precision, Recall, and F-Measure.
Entropy.
References.
Exercises.
5 CLASSIFICATION.
General Setting and Evaluation Techniques.
Nearest-Neighbor Algorithm.
Feature Selection.
Naive Bayes Algorithm.
Numerical Approaches.
Relational Learning.
References.
Exercises.
PART III: WEB USAGE MINING.
6 INTRODUCTION TO WEB USAGE MINING.
Definition of Web Usage Mining.
Cross-Industry Standard Process for Data Mining.
Clickstream Analysis.
Web Server Log Files.
Remote Host Field.
Date/Time Field.
HTTP Request Field.
Status Code Field.
Transfer Volume (Bytes) Field.
Common Log Format.
Identification Field.
Authuser Field.
Extended Common Log Format.
Referrer Field.
User Agent Field.
Example of a Web Log Record.
Microsoft IIS Log Format.
Auxiliary Information.
References.
Exercises.
7 PREPROCESSING FOR WEB USAGE MINING.
Need for Preprocessing the Data.
Data Cleaning and Filtering.
Page Extension Exploration and Filtering.
De-Spidering the Web Log File.
User Identification.
Session Identification.
Path Completion.
Directories and the Basket Transformation.
Further Data Preprocessing Steps.
References.
Exercises.
8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING.
Introduction.
Number of Visit Actions.
Session Duration.
Relationship between Visit Actions and Session Duration.
Average Time per Page.
Duration for Individual Pages.
References.
Exercises.
9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, AND
CLASSIFICATION.
Introduction.
Modeling Methodology.
Definition of Clustering.
The BIRCH Clustering Algorithm.
Affinity Analysis and the A Priori Algorithm.
Discretizing the Numerical Variables: Binning.
Applying the A Priori Algorithm to the CCSU Web Log Data.
Classification and Regression Trees.
The C4.5 Algorithm.
References.
Exercises.
INDEX.
PREFACE.
PART I: WEB STRUCTURE MINING.
1 INFORMATION RETRIEVAL AND WEB SEARCH.
Web Challenges.
Web Search Engines.
Topic Directories.
Semantic Web.
Crawling the Web.
Web Basics.
Web Crawlers.
Indexing and Keyword Search.
Document Representation.
Implementation Considerations.
Relevance Ranking.
Advanced Text Search.
Using the HTML Structure in Keyword Search.
Evaluating Search Quality.
Similarity Search.
Cosine Similarity.
Jaccard Similarity.
Document Resemblance.
References.
Exercises.
2 HYPERLINK-BASED RANKING.
Introduction.
Social Networks Analysis.
PageRank.
Authorities and Hubs.
Link-Based Similarity Search.
Enhanced Techniques for Page Ranking.
References.
Exercises.
PART II: WEB CONTENT MINING.
3 CLUSTERING.
Introduction.
Hierarchical Agglomerative Clustering.
k-Means Clustering.
Probabilty-Based Clustering.
Finite Mixture Problem.
Classification Problem.
Clustering Problem.
Collaborative Filtering (Recommender Systems).
References.
Exercises.
4 EVALUATING CLUSTERING.
Approaches to Evaluating Clustering.
Similarity-Based Criterion Functions.
Probabilistic Criterion Functions.
MDL-Based Model and Feature Evaluation.
Minimum Description Length Principle.
MDL-Based Model Evaluation.
Feature Selection.
Classes-to-Clusters Evaluation.
Precision, Recall, and F-Measure.
Entropy.
References.
Exercises.
5 CLASSIFICATION.
General Setting and Evaluation Techniques.
Nearest-Neighbor Algorithm.
Feature Selection.
Naive Bayes Algorithm.
Numerical Approaches.
Relational Learning.
References.
Exercises.
PART III: WEB USAGE MINING.
6 INTRODUCTION TO WEB USAGE MINING.
Definition of Web Usage Mining.
Cross-Industry Standard Process for Data Mining.
Clickstream Analysis.
Web Server Log Files.
Remote Host Field.
Date/Time Field.
HTTP Request Field.
Status Code Field.
Transfer Volume (Bytes) Field.
Common Log Format.
Identification Field.
Authuser Field.
Extended Common Log Format.
Referrer Field.
User Agent Field.
Example of a Web Log Record.
Microsoft IIS Log Format.
Auxiliary Information.
References.
Exercises.
7 PREPROCESSING FOR WEB USAGE MINING.
Need for Preprocessing the Data.
Data Cleaning and Filtering.
Page Extension Exploration and Filtering.
De-Spidering the Web Log File.
User Identification.
Session Identification.
Path Completion.
Directories and the Basket Transformation.
Further Data Preprocessing Steps.
References.
Exercises.
8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING.
Introduction.
Number of Visit Actions.
Session Duration.
Relationship between Visit Actions and Session Duration.
Average Time per Page.
Duration for Individual Pages.
References.
Exercises.
9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, AND
CLASSIFICATION.
Introduction.
Modeling Methodology.
Definition of Clustering.
The BIRCH Clustering Algorithm.
Affinity Analysis and the A Priori Algorithm.
Discretizing the Numerical Variables: Binning.
Applying the A Priori Algorithm to the CCSU Web Log Data.
Classification and Regression Trees.
The C4.5 Algorithm.
References.
Exercises.
INDEX.
PART I: WEB STRUCTURE MINING.
1 INFORMATION RETRIEVAL AND WEB SEARCH.
Web Challenges.
Web Search Engines.
Topic Directories.
Semantic Web.
Crawling the Web.
Web Basics.
Web Crawlers.
Indexing and Keyword Search.
Document Representation.
Implementation Considerations.
Relevance Ranking.
Advanced Text Search.
Using the HTML Structure in Keyword Search.
Evaluating Search Quality.
Similarity Search.
Cosine Similarity.
Jaccard Similarity.
Document Resemblance.
References.
Exercises.
2 HYPERLINK-BASED RANKING.
Introduction.
Social Networks Analysis.
PageRank.
Authorities and Hubs.
Link-Based Similarity Search.
Enhanced Techniques for Page Ranking.
References.
Exercises.
PART II: WEB CONTENT MINING.
3 CLUSTERING.
Introduction.
Hierarchical Agglomerative Clustering.
k-Means Clustering.
Probabilty-Based Clustering.
Finite Mixture Problem.
Classification Problem.
Clustering Problem.
Collaborative Filtering (Recommender Systems).
References.
Exercises.
4 EVALUATING CLUSTERING.
Approaches to Evaluating Clustering.
Similarity-Based Criterion Functions.
Probabilistic Criterion Functions.
MDL-Based Model and Feature Evaluation.
Minimum Description Length Principle.
MDL-Based Model Evaluation.
Feature Selection.
Classes-to-Clusters Evaluation.
Precision, Recall, and F-Measure.
Entropy.
References.
Exercises.
5 CLASSIFICATION.
General Setting and Evaluation Techniques.
Nearest-Neighbor Algorithm.
Feature Selection.
Naive Bayes Algorithm.
Numerical Approaches.
Relational Learning.
References.
Exercises.
PART III: WEB USAGE MINING.
6 INTRODUCTION TO WEB USAGE MINING.
Definition of Web Usage Mining.
Cross-Industry Standard Process for Data Mining.
Clickstream Analysis.
Web Server Log Files.
Remote Host Field.
Date/Time Field.
HTTP Request Field.
Status Code Field.
Transfer Volume (Bytes) Field.
Common Log Format.
Identification Field.
Authuser Field.
Extended Common Log Format.
Referrer Field.
User Agent Field.
Example of a Web Log Record.
Microsoft IIS Log Format.
Auxiliary Information.
References.
Exercises.
7 PREPROCESSING FOR WEB USAGE MINING.
Need for Preprocessing the Data.
Data Cleaning and Filtering.
Page Extension Exploration and Filtering.
De-Spidering the Web Log File.
User Identification.
Session Identification.
Path Completion.
Directories and the Basket Transformation.
Further Data Preprocessing Steps.
References.
Exercises.
8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING.
Introduction.
Number of Visit Actions.
Session Duration.
Relationship between Visit Actions and Session Duration.
Average Time per Page.
Duration for Individual Pages.
References.
Exercises.
9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, AND
CLASSIFICATION.
Introduction.
Modeling Methodology.
Definition of Clustering.
The BIRCH Clustering Algorithm.
Affinity Analysis and the A Priori Algorithm.
Discretizing the Numerical Variables: Binning.
Applying the A Priori Algorithm to the CCSU Web Log Data.
Classification and Regression Trees.
The C4.5 Algorithm.
References.
Exercises.
INDEX.