Data Modelling and Analytics for the Internet of Medical Things (eBook, PDF)
Redaktion: Pandey, Rajiv; Chiong, Raymond; Maurya, Pratibha
131,95 €
131,95 €
inkl. MwSt.
Sofort per Download lieferbar
66 °P sammeln
131,95 €
Als Download kaufen
131,95 €
inkl. MwSt.
Sofort per Download lieferbar
66 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
131,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
66 °P sammeln
Data Modelling and Analytics for the Internet of Medical Things (eBook, PDF)
Redaktion: Pandey, Rajiv; Chiong, Raymond; Maurya, Pratibha
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Internet of Medical Things (IoMT) is transforming the management of diseases, improving diseases diagnosis and treatment methods, and reducing healthcare cost and errors. This book integrates the architectural, conceptual, and technological aspects of IoMT, providing the reader with a comprehensive grasp of the IoMT landscape.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.22MB
Andere Kunden interessierten sich auch für
- Data Modelling and Analytics for the Internet of Medical Things (eBook, ePUB)131,95 €
- Handbook of Security and Privacy of AI-Enabled Healthcare Systems and Internet of Medical Things (eBook, PDF)188,95 €
- Human-Machine Interface Technology Advancements and Applications (eBook, PDF)52,95 €
- Handbook of Security and Privacy of AI-Enabled Healthcare Systems and Internet of Medical Things (eBook, ePUB)188,95 €
- Internet of Medical Things (eBook, PDF)48,95 €
- Practical Artificial Intelligence for Internet of Medical Things (eBook, PDF)52,95 €
- Recent Advances in AI-enabled Automated Medical Diagnosis (eBook, PDF)54,95 €
-
-
-
The Internet of Medical Things (IoMT) is transforming the management of diseases, improving diseases diagnosis and treatment methods, and reducing healthcare cost and errors. This book integrates the architectural, conceptual, and technological aspects of IoMT, providing the reader with a comprehensive grasp of the IoMT landscape.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 328
- Erscheinungstermin: 22. Dezember 2023
- Englisch
- ISBN-13: 9781003825791
- Artikelnr.: 69570084
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Taylor & Francis
- Seitenzahl: 328
- Erscheinungstermin: 22. Dezember 2023
- Englisch
- ISBN-13: 9781003825791
- Artikelnr.: 69570084
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Rajiv Pandey, Senior Member IEEE, is a faculty member at Amity Institute of Information Technology, Amity University, Uttar Pradesh, Lucknow Campus, India. Pratibha Maurya is an assistant professor at Amity Institute of Information Technology, Amity University, Uttar Pradesh, Lucknow Campus, India. Raymond Chiong is currently an associate professor with the University of Newcastle, Australia.
Part I. IoMT Datasets and Storage. 1. Remote Health Monitoring in the Era
of the Internet of Medical Things. 2. Diabetic health care data analytics
and application. 3. Blockchain for Handling Medical Data. 4. Cloud
computing for complex IoMT data. 5. The potential of IoMT Devices in Early
Detection of Suicidal Ideation. Part II. Machine Learning for Medical
Things. 6. Artificial Intelligence and Internet of Medical Things in the
Diagnosis and Prediction of Disease. 7. Predicting Cardiovascular Diseases
Using Machine Learning: A Systematic Review of the Literature. 8.
Identification of Unipolar Depression Using Boosting Algorithms. 9.
Development of EEG based Identification of Learning Disability using
Machine Learning Algorithms. 10. Deep Learning Approaches for IoMT. 11
Machine Learning and Deep Learning Techniques to Classify Depressed
Patients from Healthy, Using Brain Signals from Electroencephalogram (EEG).
12. Dimensionality Reduction for IoMT Devices Using PCA. 13. Face Mask
Detection System. Part III. IoMT: Data Analytics and Use Cases. 14. An
IoT-based Real-time ECG Monitoring Platform for Multiple Patients. 15.
Study on Anomaly Detection in Clinical Laboratory Data Using Internet of
Medical Things. 16. Computational Intelligence Framework for Improving
Quality of Life in Cancer Patients. 17. Major Depressive Disorder Detection
using Data Science and Wearable Connected Devices.
of the Internet of Medical Things. 2. Diabetic health care data analytics
and application. 3. Blockchain for Handling Medical Data. 4. Cloud
computing for complex IoMT data. 5. The potential of IoMT Devices in Early
Detection of Suicidal Ideation. Part II. Machine Learning for Medical
Things. 6. Artificial Intelligence and Internet of Medical Things in the
Diagnosis and Prediction of Disease. 7. Predicting Cardiovascular Diseases
Using Machine Learning: A Systematic Review of the Literature. 8.
Identification of Unipolar Depression Using Boosting Algorithms. 9.
Development of EEG based Identification of Learning Disability using
Machine Learning Algorithms. 10. Deep Learning Approaches for IoMT. 11
Machine Learning and Deep Learning Techniques to Classify Depressed
Patients from Healthy, Using Brain Signals from Electroencephalogram (EEG).
12. Dimensionality Reduction for IoMT Devices Using PCA. 13. Face Mask
Detection System. Part III. IoMT: Data Analytics and Use Cases. 14. An
IoT-based Real-time ECG Monitoring Platform for Multiple Patients. 15.
Study on Anomaly Detection in Clinical Laboratory Data Using Internet of
Medical Things. 16. Computational Intelligence Framework for Improving
Quality of Life in Cancer Patients. 17. Major Depressive Disorder Detection
using Data Science and Wearable Connected Devices.
Part I. IoMT Datasets and Storage. 1. Remote Health Monitoring in the Era
of the Internet of Medical Things. 2. Diabetic health care data analytics
and application. 3. Blockchain for Handling Medical Data. 4. Cloud
computing for complex IoMT data. 5. The potential of IoMT Devices in Early
Detection of Suicidal Ideation. Part II. Machine Learning for Medical
Things. 6. Artificial Intelligence and Internet of Medical Things in the
Diagnosis and Prediction of Disease. 7. Predicting Cardiovascular Diseases
Using Machine Learning: A Systematic Review of the Literature. 8.
Identification of Unipolar Depression Using Boosting Algorithms. 9.
Development of EEG based Identification of Learning Disability using
Machine Learning Algorithms. 10. Deep Learning Approaches for IoMT. 11
Machine Learning and Deep Learning Techniques to Classify Depressed
Patients from Healthy, Using Brain Signals from Electroencephalogram (EEG).
12. Dimensionality Reduction for IoMT Devices Using PCA. 13. Face Mask
Detection System. Part III. IoMT: Data Analytics and Use Cases. 14. An
IoT-based Real-time ECG Monitoring Platform for Multiple Patients. 15.
Study on Anomaly Detection in Clinical Laboratory Data Using Internet of
Medical Things. 16. Computational Intelligence Framework for Improving
Quality of Life in Cancer Patients. 17. Major Depressive Disorder Detection
using Data Science and Wearable Connected Devices.
of the Internet of Medical Things. 2. Diabetic health care data analytics
and application. 3. Blockchain for Handling Medical Data. 4. Cloud
computing for complex IoMT data. 5. The potential of IoMT Devices in Early
Detection of Suicidal Ideation. Part II. Machine Learning for Medical
Things. 6. Artificial Intelligence and Internet of Medical Things in the
Diagnosis and Prediction of Disease. 7. Predicting Cardiovascular Diseases
Using Machine Learning: A Systematic Review of the Literature. 8.
Identification of Unipolar Depression Using Boosting Algorithms. 9.
Development of EEG based Identification of Learning Disability using
Machine Learning Algorithms. 10. Deep Learning Approaches for IoMT. 11
Machine Learning and Deep Learning Techniques to Classify Depressed
Patients from Healthy, Using Brain Signals from Electroencephalogram (EEG).
12. Dimensionality Reduction for IoMT Devices Using PCA. 13. Face Mask
Detection System. Part III. IoMT: Data Analytics and Use Cases. 14. An
IoT-based Real-time ECG Monitoring Platform for Multiple Patients. 15.
Study on Anomaly Detection in Clinical Laboratory Data Using Internet of
Medical Things. 16. Computational Intelligence Framework for Improving
Quality of Life in Cancer Patients. 17. Major Depressive Disorder Detection
using Data Science and Wearable Connected Devices.