120,95 €
120,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
60 °P sammeln
120,95 €
120,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
Als Download kaufen
120,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
60 °P sammeln
Jetzt verschenken
120,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
60 °P sammeln
  • Format: ePub

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical…mehr

Produktbeschreibung
Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®.

  • Combines statistics and operations research modeling to teach the principles of business analytics
  • Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business
  • Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Fávero is a Full Professor at the Economics, Business Administration and Accounting College and at the Polytechnic School of the University of Sao Paulo (FEAUSP and EPUSP), where he teaches Data Science, Data Analysis, Multivariate Modeling, Machine and Deep Learning and Operational Research to undergraduate, Master's and Doctorate students. He has a Post-Doctorate degree in Data Analysis and Econometrics from Columbia University in New York. He is a tenured Professor by FEA/USP (with greater focus on Quantitative Modeling). He has a degree in Engineering from USP Polytechnic School, a post-graduate degree in Business Administration from Getúlio Vargas Foundation (FGV/SP), and he has received the titles of Master and PhD in Data Science and Quantitative Methods applied to Organizational Economics from FEA/USP. He is a Visiting Professor at the Federal University of Sao Paulo (UNIFESP), Dom Cabral Foundation, Getúlio Vargas Foundation, FIA, FIPE and MONTVERO. He has authored or co-authored 9 books and he is the founder and former editor-in-chief of the International Journal of Multivariate Data Analysis. He is member and founder of the Latin American Academy of Data Science. He is a consultant to companies operating in sectors such as retail, industry, mining, banks, insurance and healthcare, with the use of Data Analysis, Machine and Deep Learning, Big Data and AI platforms, such as R, Python, SAS, Stata and IBM SPSS. Dr. Fávero is a Full Professor at the Economics, Business Administration and Accounting College and at the Polytechnic School of the University of Sao Paulo (FEAUSP and EPUSP), where he teaches Data Science, Data Analysis, Multivariate Modeling, Machine and Deep Learning and Operational Research to undergraduate, Master's and Doctorate students. He has a Post-Doctorate degree in Data Analysis and Econometrics from Columbia University in New York. He is a tenured Professor by FEA/USP (with greater focus on Quantitative Modeling). He has a degree in Engineering from USP Polytechnic School, a post-graduate degree in Business Administration from Getúlio Vargas Foundation (FGV/SP), and he has received the titles of Master and PhD in Data Science and Quantitative Methods applied to Organizational Economics from FEA/USP. He is a Visiting Professor at the Federal University of Sao Paulo (UNIFESP), Dom Cabral Foundation, Getúlio Vargas Foundation, FIA, FIPE and MONTVERO. He has authored or co-authored 9 books and he is the founder and former editor-in-chief of the International Journal of Multivariate Data Analysis. He is member and founder of the Latin American Academy of Data Science. He is a consultant to companies operating in sectors such as retail, industry, mining, banks, insurance and healthcare, with the use of Data Analysis, Machine and Deep Learning, Big Data and AI platforms, such as R, Python, SAS, Stata and IBM SPSS.