43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
22 °P sammeln
Jetzt verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
22 °P sammeln
  • Format: ePub

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance.Apply the Amazon AI and ML stack to real-world use…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 23.52MB
  • FamilySharing(5)
Produktbeschreibung
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance.Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and moreUse automated machine learning to implement a specific subset of use cases with SageMaker AutopilotDive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deploymentTie everything together into a repeatable machine learning operations pipelineExplore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache KafkaLearn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Chris Fregly is a Developer Advocate for AI and Machine Learning at Amazon Web Services (AWS) based in San Francisco, California. He is also the founder of the Advanced Spark, TensorFlow, and KubeFlow Meetup Series based in San Francisco. Chris regularly speaks at AI and Machine Learning conferences across the world including the O'Reilly AI, Strata, and Velocity Conferences. Previously, Chris was Founder at PipelineAI where he worked with many AI-first startups and enterprises to continuously deploy ML/AI Pipelines using Apache Spark ML, Kubernetes, TensorFlow, Kubeflow, Amazon EKS, and Amazon SageMaker. He is also the author of the O'Reilly Online Training Series "High Performance TensorFlow in Production with GPUs” Antje Barth is a Developer Advocate for AI and Machine Learning at Amazon Web Services (AWS) based in Düsseldorf, Germany. She is also co-founder of the Düsseldorf chapter of Women in Big Data Meetup. Antje frequently speaks at AI and Machine Learning conferences and meetups around the world, including the O'Reilly AI and Strata conferences. Besides ML/AI, Antje is passionate about helping developers leverage Big Data, container and Kubernetes platforms in the context of AI and Machine Learning. Prior to joining AWS, Antje worked in technical evangelist and solutions engineering roles at MapR and Cisco.