Data Warehousing and Knowledge Discovery (eBook, PDF)
6th International Conference, DaWaK 2004, Zaragoza, Spain, September 1-3, 2004, Proceedings
Redaktion: Kambayashi, Yahiko; Wöß, Wolfram; Mohania, Mukesh
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Data Warehousing and Knowledge Discovery (eBook, PDF)
6th International Conference, DaWaK 2004, Zaragoza, Spain, September 1-3, 2004, Proceedings
Redaktion: Kambayashi, Yahiko; Wöß, Wolfram; Mohania, Mukesh
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.97MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 412
- Erscheinungstermin: 8. November 2004
- Englisch
- ISBN-13: 9783540300762
- Artikelnr.: 53130703
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Yahiko Kambayashi, University of Kyoto, Japan / Mukesh Mohania, I.B.M. India Research Lab., New Delhi, India / Wolfgang Wöß, University of Linz, Austria
Data Warehousing Design.- Conceptual Design of XML Document Warehouses.- Bringing Together Partitioning, Materialized Views and Indexes to Optimize Performance of Relational Data Warehouses.- GeoDWFrame: A Framework for Guiding the Design of Geographical Dimensional Schemas.- Workload-Based Placement and Join Processing in Node-Partitioned Data Warehouses.- Knowledge Discovery Framework and XML Data Minig.- Novelty Framework for Knowledge Discovery in Databases.- Revisiting Generic Bases of Association Rules.- Mining Maximal Frequently Changing Subtree Patterns from XML Documents.- Discovering Pattern-Based Dynamic Structures from Versions of Unordered XML Documents.- Data Cubes and Queries.- Space-Efficient Range-Sum Queries in OLAP.- Answering Approximate Range Aggregate Queries on OLAP Data Cubes with Probabilistic Guarantees.- Computing Complex Iceberg Cubes by Multiway Aggregation and Bounding.- Multidimensional Schema and Data Aggregation.- An Aggregate-Aware Retargeting Algorithm for Multiple Fact Data Warehouses.- A Partial Pre-aggregation Scheme for HOLAP Engines.- Discovering Multidimensional Structure in Relational Data.- Inductive Databases and Temporal Rules.- Inductive Databases as Ranking.- Inductive Databases of Polynomial Equations.- From Temporal Rules to Temporal Meta-rules.- Industrial Track.- How Is BI Used in Industry?: Report from a Knowledge Exchange Network.- Towards an Adaptive Approach for Mining Data Streams in Resource Constrained Environments.- Data Clustering.- Exploring Possible Adverse Drug Reactions by Clustering Event Sequences.- SCLOPE: An Algorithm for Clustering Data Streams of Categorical Attributes.- Novel Clustering Approach that Employs Genetic Algorithm with New Representation Scheme and Multiple Objectives.- Data Visualizationand Exploration.- Categorical Data Visualization and Clustering Using Subjective Factors.- Multidimensional Data Visual Exploration by Interactive Information Segments.- Metadata to Support Transformations and Data & Metadata Lineage in a Warehousing Environment.- Data Classification, Extraction and Interpretation.- Classification Based on Attribute Dependency.- OWDEAH: Online Web Data Extraction Based on Access History.- Data Mining Approaches to Diffuse Large B-Cell Lymphoma Gene Expression Data Interpretation.- Data Semantics.- Deriving Multiple Topics to Label Small Document Regions.- Deriving Efficient SQL Sequences via Read-Aheads.- Diversity in Random Subspacing Ensembles.- Association Rule Mining.- Partitioned Approach to Association Rule Mining over Multiple Databases.- A Tree Partitioning Method for Memory Management in Association Rule Mining.- Mining Interesting Association Rules for Prediction in the Software Project Management Area.- Mining Event Sequences.- PROWL: An Efficient Frequent Continuity Mining Algorithm on Event Sequences.- Algorithms for Discovery of Frequent Superset, Rather Than Frequent Subset.- Pattern Mining.- Improving Direct Counting for Frequent Itemset Mining.- Mining Sequential Patterns with Item Constraints.- Mining Borders of the Difference of Two Datacubes.- Mining Periodic Patterns in Sequence Data.
Data Warehousing Design.- Conceptual Design of XML Document Warehouses.- Bringing Together Partitioning, Materialized Views and Indexes to Optimize Performance of Relational Data Warehouses.- GeoDWFrame: A Framework for Guiding the Design of Geographical Dimensional Schemas.- Workload-Based Placement and Join Processing in Node-Partitioned Data Warehouses.- Knowledge Discovery Framework and XML Data Minig.- Novelty Framework for Knowledge Discovery in Databases.- Revisiting Generic Bases of Association Rules.- Mining Maximal Frequently Changing Subtree Patterns from XML Documents.- Discovering Pattern-Based Dynamic Structures from Versions of Unordered XML Documents.- Data Cubes and Queries.- Space-Efficient Range-Sum Queries in OLAP.- Answering Approximate Range Aggregate Queries on OLAP Data Cubes with Probabilistic Guarantees.- Computing Complex Iceberg Cubes by Multiway Aggregation and Bounding.- Multidimensional Schema and Data Aggregation.- An Aggregate-Aware Retargeting Algorithm for Multiple Fact Data Warehouses.- A Partial Pre-aggregation Scheme for HOLAP Engines.- Discovering Multidimensional Structure in Relational Data.- Inductive Databases and Temporal Rules.- Inductive Databases as Ranking.- Inductive Databases of Polynomial Equations.- From Temporal Rules to Temporal Meta-rules.- Industrial Track.- How Is BI Used in Industry?: Report from a Knowledge Exchange Network.- Towards an Adaptive Approach for Mining Data Streams in Resource Constrained Environments.- Data Clustering.- Exploring Possible Adverse Drug Reactions by Clustering Event Sequences.- SCLOPE: An Algorithm for Clustering Data Streams of Categorical Attributes.- Novel Clustering Approach that Employs Genetic Algorithm with New Representation Scheme and Multiple Objectives.- Data Visualizationand Exploration.- Categorical Data Visualization and Clustering Using Subjective Factors.- Multidimensional Data Visual Exploration by Interactive Information Segments.- Metadata to Support Transformations and Data & Metadata Lineage in a Warehousing Environment.- Data Classification, Extraction and Interpretation.- Classification Based on Attribute Dependency.- OWDEAH: Online Web Data Extraction Based on Access History.- Data Mining Approaches to Diffuse Large B-Cell Lymphoma Gene Expression Data Interpretation.- Data Semantics.- Deriving Multiple Topics to Label Small Document Regions.- Deriving Efficient SQL Sequences via Read-Aheads.- Diversity in Random Subspacing Ensembles.- Association Rule Mining.- Partitioned Approach to Association Rule Mining over Multiple Databases.- A Tree Partitioning Method for Memory Management in Association Rule Mining.- Mining Interesting Association Rules for Prediction in the Software Project Management Area.- Mining Event Sequences.- PROWL: An Efficient Frequent Continuity Mining Algorithm on Event Sequences.- Algorithms for Discovery of Frequent Superset, Rather Than Frequent Subset.- Pattern Mining.- Improving Direct Counting for Frequent Itemset Mining.- Mining Sequential Patterns with Item Constraints.- Mining Borders of the Difference of Two Datacubes.- Mining Periodic Patterns in Sequence Data.