A. V. Gheorghe
Decision Processes in Dynamic Probabilistic Systems (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
A. V. Gheorghe
Decision Processes in Dynamic Probabilistic Systems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.17MB
Andere Kunden interessierten sich auch für
- Vladimir V. KalashnikovMathematical Methods in Queuing Theory (eBook, PDF)73,95 €
- Wai-Ki ChingMarkov Chains: Models, Algorithms and Applications (eBook, PDF)98,95 €
- Richard SerfozoIntroduction to Stochastic Networks (eBook, PDF)73,95 €
- Stochastic Models in Reliability and Maintenance (eBook, PDF)73,95 €
- Applied Probability and Stochastic Processes (eBook, PDF)161,95 €
- Onesimo Hernandez-LermaAdaptive Markov Control Processes (eBook, PDF)40,95 €
- Modeling Uncertainty (eBook, PDF)73,95 €
-
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 376
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400904934
- Artikelnr.: 44180613
- Verlag: Springer Netherlands
- Seitenzahl: 376
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400904934
- Artikelnr.: 44180613
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Semi-Markov and Markov Chains.- 1.1 Definitions and basic properties.- 1.2 Algebraic and analytical methods in the study of Markovian systems.- 1.3 Transient and recurrent processes.- 1.4 Markovian populations.- 1.5 Partially observable Markov chains.- 1.6 Rewards and discounting.- 1.7 Models and applications.- 1.8 Dynamic-decision models for clinical diagnosis.- 2 Dynamic and Linear Programming.- 2.1 Discrete dynamic programming.- 2.2 A linear programming formulation and an algorithm for computation.- 3 Utility Functions and Decisions under Risk.- 3.1 Informational lotteries and axioms for utility functions.- 3.2 Exponential utility functions.- 3.3 Decisions under risk and uncertainty; event trees.- 3.4 Probability encoding.- 4 Markovian Decision Processes (Semi-Markov and Markov) with Complete Information (Completely Observable).- 4.1 Value iteration algorithm (the finite horizon case).- 4.2 Policy iteration algorithm (the finite horizon optimization).- 4.3 Policy iteration with discounting.- 4.4 Optimization algorithm using linear programming.- 4.5 Risk-sensitive decision processes.- 4.6 On eliminating sub-optimal decision alternatives in Markov and semi-Markov decision processes.- 5 Partially Observable Markovian Decision Processes.- 5.1 Finite horizon partially observable Markov decision processes.- 5.2 The infinite horizon with discounting for partially observable Markov decision processes.- 5.3 A useful policy iteration algorithm, for discounted (? < 1) partially observable Markov decision processes.- 5.4 The infinite horizon without discounting for partially observable Markov processes.- 5.5 Partially observable semi-Markov decision processes.- 5.6 Risk-sensitive partially observable Markov decision processes.- 6 Policy Constraints in Markov DecisionProcesses.- 6.1 Methods of investigating policy costraints in Markov decision processes.- 6.2 Markov decision processes with policy constraints.- 6.3 Risk-sensitive Markov decision process with policy constraints.- 7 Applications.- 7.1 The emergency repair control for electrical power systems.- 7.2 Stochastic models for evaluation of inspection and repair schedules [2].- 7.3 A Markovian dicision model for clinical diagnosis and treatment applied to the respiratory system.
1 Semi-Markov and Markov Chains.- 1.1 Definitions and basic properties.- 1.2 Algebraic and analytical methods in the study of Markovian systems.- 1.3 Transient and recurrent processes.- 1.4 Markovian populations.- 1.5 Partially observable Markov chains.- 1.6 Rewards and discounting.- 1.7 Models and applications.- 1.8 Dynamic-decision models for clinical diagnosis.- 2 Dynamic and Linear Programming.- 2.1 Discrete dynamic programming.- 2.2 A linear programming formulation and an algorithm for computation.- 3 Utility Functions and Decisions under Risk.- 3.1 Informational lotteries and axioms for utility functions.- 3.2 Exponential utility functions.- 3.3 Decisions under risk and uncertainty; event trees.- 3.4 Probability encoding.- 4 Markovian Decision Processes (Semi-Markov and Markov) with Complete Information (Completely Observable).- 4.1 Value iteration algorithm (the finite horizon case).- 4.2 Policy iteration algorithm (the finite horizon optimization).- 4.3 Policy iteration with discounting.- 4.4 Optimization algorithm using linear programming.- 4.5 Risk-sensitive decision processes.- 4.6 On eliminating sub-optimal decision alternatives in Markov and semi-Markov decision processes.- 5 Partially Observable Markovian Decision Processes.- 5.1 Finite horizon partially observable Markov decision processes.- 5.2 The infinite horizon with discounting for partially observable Markov decision processes.- 5.3 A useful policy iteration algorithm, for discounted (? < 1) partially observable Markov decision processes.- 5.4 The infinite horizon without discounting for partially observable Markov processes.- 5.5 Partially observable semi-Markov decision processes.- 5.6 Risk-sensitive partially observable Markov decision processes.- 6 Policy Constraints in Markov DecisionProcesses.- 6.1 Methods of investigating policy costraints in Markov decision processes.- 6.2 Markov decision processes with policy constraints.- 6.3 Risk-sensitive Markov decision process with policy constraints.- 7 Applications.- 7.1 The emergency repair control for electrical power systems.- 7.2 Stochastic models for evaluation of inspection and repair schedules [2].- 7.3 A Markovian dicision model for clinical diagnosis and treatment applied to the respiratory system.