24,95 €
24,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
24,95 €
24,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
Als Download kaufen
24,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
Jetzt verschenken
24,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
  • Format: ePub

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learningespecially deep neural networksmake a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 17.32MB
Produktbeschreibung
Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learningespecially deep neural networksmake a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, youll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.Dive into machine learning concepts in general, as well as deep learning in particularUnderstand how deep networks evolved from neural network fundamentalsExplore the major deep network architectures, including Convolutional and RecurrentLearn how to map specific deep networks to the right problemWalk through the fundamentals of tuning general neural networks and specific deep network architecturesUse vectorization techniques for different data types with DataVec, DL4Js workflow toolLearn how to use DL4J natively on Spark and Hadoop

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Josh Patterson is CEO of Patterson Consulting, a solution integrator at the intersection of big data and applied machine learning. In this role, he brings his unique perspective blending a decade of big data experience and wide-ranging deep learning experience to Fortune 500 projects. At the Tennessee Valley Authority (TVA), Josh drove the integration of Apache Hadoop for large-scale data storage and processing of smart grid phasor measurement unit (PMU) data. Post-TVA, Josh was a principal solutions architect for a young Hadoop startup named Cloudera (CLDR), as employee 34. After leaving Cloudera, Josh co-founded the Deeplearning4j project and co-wrote Deep Learning: A Practitioner's Approach (O'Reilly Media). Josh was also the VP of Field Engineering for Skymind. Adam Gibson is a deep-learning specialist based in San Francisco who works with Fortune 500 companies, hedge funds, PR firms and startup accelerators to create their machine-learning projects. Adam has a strong track record helping companies handle and interpret big realtime data. Adam has been a computer nerd since he was 13, and actively contributes to the open-source community through deeplearning4j.org.