Deep Learning es, en gran medida, el causante de la revolución actual en el campo de la inteligencia artificial. Podría parecer una tecnología nueva, sin embargo, es esencialmente la evolución de las redes neuronales artificiales, que tienen más de 60 años en el área de la inteligencia artificial. Si desea conocer el desarrollo de Deep Learning desde su origen, este es el libro indicado. Deep Learning, teorías y aplicaciones se ha concebido para dar una introducción general, incluyendo un barrido histórico por los progresos que dieron origen a esta tecnología. Parte de las redes neuronales clásicas como las monocapa y sigue por las superficiales hasta llegar a las profundas, como las redes neuronales convolucionales, ampliamente usadas en aplicaciones de procesamiento de imágenes. Además, este libro hace un balance entre el contenido teórico y práctico. La parte conceptual le será útil para aproximarse a los conceptos teóricos básicos más relevantes. La parte experimental le servirá como apoyo a una aproximación práctica a esta tecnología, y lo logrará por medio de ejemplos resueltos sobre problemas reales en Deep Learning. Asimismo, para el componente práctico, se utilizan herramientas de amplio uso en la comunidad académica como el sistema de prototipado electrónico rápido Arduino y el software de simulación Matlab, por lo que gracias a esta lectura estará al día de las últimas tendencias tecnológicas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.