Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This work addresses time-delay in complex nonlinear systems and, in particular, its applications in complex networks; its role in control theory and nonlinear optics are also investigated. Delays arise naturally in networks of coupled systems due to finite signal propagation speeds and are thus a key issue in many areas of physics, biology, medicine, and technology. Synchronization phenomena in these networks play an important role, e.g., in the context of learning, cognitive and pathological states in the brain, for secure communication with chaotic lasers or for gene regulation. The thesis…mehr
This work addresses time-delay in complex nonlinear systems and, in particular, its applications in complex networks; its role in control theory and nonlinear optics are also investigated. Delays arise naturally in networks of coupled systems due to finite signal propagation speeds and are thus a key issue in many areas of physics, biology, medicine, and technology. Synchronization phenomena in these networks play an important role, e.g., in the context of learning, cognitive and pathological states in the brain, for secure communication with chaotic lasers or for gene regulation. The thesis includes both novel results on the control of complex dynamics by time-delayed feedback and fundamental new insights into the interplay of delay and synchronization. One of the most interesting results here is a solution to the problem of complete synchronization in general networks with large coupling delay, i.e., large distances between the nodes, by giving a universal classification of networks that has a wide range of interdisciplinary applications.
Stabilization of Odd-Number Orbits.- Time Delayed Feedback Control.- Counterexample.- Odd-Number Orbits Close to a Fold Bifurcation.- Towards Stabilization of Odd-Number Orbits in Experiments.- Stabilization with Symmetric Feedback Matrices.- Application to Laser Systems.- Stabilization of Anti-Phase Orbits.- Synchronization of Delay Coupled Systems.- Structure of the Master Stability Function for Large Delay.- Lang Kobayashi Laser Equations.- Necessary Conditions for Synchronization of Lasers.- Bubbling.- Summary and Conclusions.- Appendix.- Index.
Stabilization of Odd-Number Orbits.- Time Delayed Feedback Control.- Counterexample.- Odd-Number Orbits Close to a Fold Bifurcation.- Towards Stabilization of Odd-Number Orbits in Experiments.- Stabilization with Symmetric Feedback Matrices.- Application to Laser Systems.- Stabilization of Anti-Phase Orbits.- Synchronization of Delay Coupled Systems.- Structure of the Master Stability Function for Large Delay.- Lang Kobayashi Laser Equations.- Necessary Conditions for Synchronization of Lasers.- Bubbling.- Summary and Conclusions.- Appendix.- Index.
Stabilization of Odd-Number Orbits.- Time Delayed Feedback Control.- Counterexample.- Odd-Number Orbits Close to a Fold Bifurcation.- Towards Stabilization of Odd-Number Orbits in Experiments.- Stabilization with Symmetric Feedback Matrices.- Application to Laser Systems.- Stabilization of Anti-Phase Orbits.- Synchronization of Delay Coupled Systems.- Structure of the Master Stability Function for Large Delay.- Lang Kobayashi Laser Equations.- Necessary Conditions for Synchronization of Lasers.- Bubbling.- Summary and Conclusions.- Appendix.- Index.
Stabilization of Odd-Number Orbits.- Time Delayed Feedback Control.- Counterexample.- Odd-Number Orbits Close to a Fold Bifurcation.- Towards Stabilization of Odd-Number Orbits in Experiments.- Stabilization with Symmetric Feedback Matrices.- Application to Laser Systems.- Stabilization of Anti-Phase Orbits.- Synchronization of Delay Coupled Systems.- Structure of the Master Stability Function for Large Delay.- Lang Kobayashi Laser Equations.- Necessary Conditions for Synchronization of Lasers.- Bubbling.- Summary and Conclusions.- Appendix.- Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497