Subhasis Chaudhuri, A. N. Rajagopalan
Depth From Defocus: A Real Aperture Imaging Approach (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Subhasis Chaudhuri, A. N. Rajagopalan
Depth From Defocus: A Real Aperture Imaging Approach (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Depth recovery is important in machine vision applications when a 3-dimensional structure must be derived from 2-dimensional images. This is an active area of research with applications ranging from industrial robotics to military imaging. This book provides the comprehensive details of the methodology, along with the complete mathematics and algorithms involved. Many new models, both deterministic and statistical, are introduced.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 16.9MB
Andere Kunden interessierten sich auch für
- Energy Minimization Methods in Computer Vision and Pattern Recognition (eBook, PDF)40,95 €
- Scale Space and Variational Methods in Computer Vision (eBook, PDF)73,95 €
- Richard SzeliskiBayesian Modeling of Uncertainty in Low-Level Vision (eBook, PDF)73,95 €
- Paolo Favaro3-D Shape Estimation and Image Restoration (eBook, PDF)38,95 €
- Time-of-Flight and Depth Imaging. Sensors, Algorithms and Applications (eBook, PDF)57,95 €
- Yi-Tong ZhouArtificial Neural Networks for Computer Vision (eBook, PDF)40,95 €
- Medical Imaging and Augmented Reality (eBook, PDF)40,95 €
-
-
-
Depth recovery is important in machine vision applications when a 3-dimensional structure must be derived from 2-dimensional images. This is an active area of research with applications ranging from industrial robotics to military imaging. This book provides the comprehensive details of the methodology, along with the complete mathematics and algorithms involved. Many new models, both deterministic and statistical, are introduced.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 172
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461214908
- Artikelnr.: 43991547
- Verlag: Springer New York
- Seitenzahl: 172
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461214908
- Artikelnr.: 43991547
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Passive Methods for Depth Recovery.- 1.1 Introduction.- 1.2 Different Methods of Depth Recovery.- 1.3 Difficulties in Passive Ranging.- 1.4 Organization of the Book.- 2 Depth Recovery from Defocused Images.- 2.1 Introduction.- 2.2 Theory of Depth from Defocus.- 2.3 Related Work.- 2.4 Summary of the Book.- 3 Mathematical Background.- 3.1 Introduction.- 3.2 Time-Frequency Representation.- 3.3 Calculus of Variations.- 3.4 Markov Random Fields and Gibbs Distributions.- 4 Depth Recovery with a Block Shift-Variant Blur Model.- 4.1 Introduction.- 4.2 The Block Shift-Variant Blur Model.- 4.3 Experimental Results.- 4.4 Discussion.- 5 Space-Variant Filtering Models for Recovering Depth.- 5.1 Introduction.- 5.2 Space-Variant Filtering.- 5.3 Depth Recovery Using the Complex Spectrogram.- 5.4 The Pseudo-Wigner Distribution for Recovery of Depth.- 5.5 Imposing Smoothness Constraint.- 5.6 Experimental Results.- 5.7 Discussion.- 6 ML Estimation of Depth and Optimal Camera Settings.- 6.1 Introduction.- 6.2 Image and Observation Models.- 6.3 ML-Based Recovery of Depth.- 6.4 Computation of the Likelihood Function.- 6.5 Optimality of Camera Settings.- 6.6 Experimental Results.- 6.7 Discussion.- 7 Recursive Computation of Depth from Multiple Images.- 7.1 Introduction.- 7.2 Blur Identification from Multiple Images.- 7.3 Minimization by Steepest Descent.- 7.4 Recursive Algorithm for Computing the Likelihood Function.- 7.5 Experimental Results.- 7.6 Discussion.- 8 MRF Model-Based Identification of Shift-Variant PSF.- 8.1 Introduction.- 8.2 A MAP-MRF Approach.- 8.3 The Posterior Distribution and Its Neighborhood.- 8.4 MAP Estimation by Simulated Annealing.- 8.5 Experimental Results.- 8.6 Discussion.- 9 Simultaneous Depth Recovery and Image Restoration.- 9.1 Introduction.- 9.2 Depth Recovery and Restoration using MRF Models.- 9.3 Locality of the Posterior Distribution.- 9.4 Parameter Estimation.- 9.5 Experimental Results.- 9.6 Discussion.- 10 Conclusions.- A Partial Derivatives of Various Quantities in CRB.- References.
1 Passive Methods for Depth Recovery.- 1.1 Introduction.- 1.2 Different Methods of Depth Recovery.- 1.3 Difficulties in Passive Ranging.- 1.4 Organization of the Book.- 2 Depth Recovery from Defocused Images.- 2.1 Introduction.- 2.2 Theory of Depth from Defocus.- 2.3 Related Work.- 2.4 Summary of the Book.- 3 Mathematical Background.- 3.1 Introduction.- 3.2 Time-Frequency Representation.- 3.3 Calculus of Variations.- 3.4 Markov Random Fields and Gibbs Distributions.- 4 Depth Recovery with a Block Shift-Variant Blur Model.- 4.1 Introduction.- 4.2 The Block Shift-Variant Blur Model.- 4.3 Experimental Results.- 4.4 Discussion.- 5 Space-Variant Filtering Models for Recovering Depth.- 5.1 Introduction.- 5.2 Space-Variant Filtering.- 5.3 Depth Recovery Using the Complex Spectrogram.- 5.4 The Pseudo-Wigner Distribution for Recovery of Depth.- 5.5 Imposing Smoothness Constraint.- 5.6 Experimental Results.- 5.7 Discussion.- 6 ML Estimation of Depth and Optimal Camera Settings.- 6.1 Introduction.- 6.2 Image and Observation Models.- 6.3 ML-Based Recovery of Depth.- 6.4 Computation of the Likelihood Function.- 6.5 Optimality of Camera Settings.- 6.6 Experimental Results.- 6.7 Discussion.- 7 Recursive Computation of Depth from Multiple Images.- 7.1 Introduction.- 7.2 Blur Identification from Multiple Images.- 7.3 Minimization by Steepest Descent.- 7.4 Recursive Algorithm for Computing the Likelihood Function.- 7.5 Experimental Results.- 7.6 Discussion.- 8 MRF Model-Based Identification of Shift-Variant PSF.- 8.1 Introduction.- 8.2 A MAP-MRF Approach.- 8.3 The Posterior Distribution and Its Neighborhood.- 8.4 MAP Estimation by Simulated Annealing.- 8.5 Experimental Results.- 8.6 Discussion.- 9 Simultaneous Depth Recovery and Image Restoration.- 9.1 Introduction.- 9.2 Depth Recovery and Restoration using MRF Models.- 9.3 Locality of the Posterior Distribution.- 9.4 Parameter Estimation.- 9.5 Experimental Results.- 9.6 Discussion.- 10 Conclusions.- A Partial Derivatives of Various Quantities in CRB.- References.