Wolfram Koepf
DERIVE für den Mathematikunterricht (eBook, PDF)
-23%11
22,99 €
29,99 €**
22,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
-23%11
22,99 €
29,99 €**
22,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Als Download kaufen
29,99 €****
-23%11
22,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Jetzt verschenken
Alle Infos zum eBook verschenken
29,99 €****
-23%11
22,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
Wolfram Koepf
DERIVE für den Mathematikunterricht (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Computeralgebra-Systeme spielen in Zukunft im Mathematikunterricht der Sekundarstufe II eine wichtige Rolle. Dieses Buch ist auf den Schulstoff der Sekundarstufe II ausgerichtet und richtet sich an Lehramtsstudenten und interessierte Lehrer, die sich in das Programm DERIVE einarbeiten möchten, um es dann im Unterricht, insbesondere in Leistungskursen Mathematik, zu verwenden.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 14.58MB
Computeralgebra-Systeme spielen in Zukunft im Mathematikunterricht der Sekundarstufe II eine wichtige Rolle. Dieses Buch ist auf den Schulstoff der Sekundarstufe II ausgerichtet und richtet sich an Lehramtsstudenten und interessierte Lehrer, die sich in das Programm DERIVE einarbeiten möchten, um es dann im Unterricht, insbesondere in Leistungskursen Mathematik, zu verwenden.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 186
- Erscheinungstermin: 9. März 2013
- Deutsch
- ISBN-13: 9783322915849
- Artikelnr.: 53145468
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 186
- Erscheinungstermin: 9. März 2013
- Deutsch
- ISBN-13: 9783322915849
- Artikelnr.: 53145468
Dr. Wolfram Koepf ist am Konrad-Zuse-Zentrum für Informationstechnik Berlin tätig.
1 Geometrie.- 1.1 Dreiecksgeometrie ohne Trigonometrie.- 1.2 Graphische Darstellung der Dreiecksgeometrie.- 1.3 Gleichseitige Dreiecke.- 1.4 Dreiecksgeometrie mit Trigonometrie.- 1.5 Iterative Berechnung der Kreiszahl ?.- 2 Kurven zweiter Ordnung.- 2.1 Die Ellipse.- 2.2 Die Parabel.- 2.3 Die Hyperbel.- 2.4 Drehungen.- 2.5 Polarkoordinatendarstellungen.- 3 Iterationsverfahren.- 3.1 Iteration und Fixpunkte.- 3.2 Das Newtonverfahren.- 3.3 Divergente und chaotische Iteration.- 3.4 Das Bisektionsverfahren.- 3.5 Verbessertes Newtonverfahren.- 4 Interpolationspolynome.- 4.1 Die Formel von Lagrange.- 4.2 Polynomapproximation von Funktionen.- 4.3 Genauere Näherungswerte trigonometrischer Funktionen.- 4.4 Fehlerrechnung für die Lagrange-Interpolation.- 4.5 Das Sinusprodukt.- 5 Flächenberechnung.- 5.1 Regelmäßige arithmetische Zerlegungen.- 5.2 Regelmäßige geometrische Zerlegungen.- 5.3 Numerische Integration.- 5.4 Graphische Darstellung der Integrationsverfahren.- 5.5 Volumina und Oberflächen von Rotationskörpern.- 6 Partielle Integration.- 6.1 Unbestimmte Integration.- 6.2 Integrale von Potenzen.- 6.3 Bestimmte Integration.- 6.4 Schlecht konditionierte Probleme.- 6.5 Integrale, bei denen DERIVE scheitert.- 7 Potenzreihen.- 7.1 Integralformeln mit DERIVE.- 7.2 Beweis durch Substitution.- 7.3 Die Logarithmus- und Arkustangensreihe.- 7.4 Randverhalten der Reihen.- 7.5 Die Exponentialreihe.- 8 Die Goldbachsche Vermutung.- 8.1 Goldbachzerlegungen.- 8.2 Asymptotische Betrachtungen.- 8.3 Goldbachzerlegungen großer ganzer Zahlen.- 9 Lineare Gleichungssysteme und Matrizen.- 9.1 Lineare Gleichungssysteme.- 9.2 Matrizen und Kondition.- 9.3 Die Hilbertmatrix.- 10 Einfache Differentialgleichungen.- 10.1 Warum Differentialgleichungen?.- 10.2 Trennung der Variablen.- 10.3Orthogonaltrajektorien.- 10.4 Lineare Differentialgleichungen erster Ordnung.- 10.5 Die Schwingungsgleichung.- 11 DERIVE-Funktionen.- 11.1 DERIVE-Funktionen in Kapitel 1.- 11.2 DERIVE-Funktionen in Kapitel 2.- 11.3 DERIVE-Funktionen in Kapitel 3.- 11.4 DERIVE-Funktionen in Kapitel 4.- 11.5 DERIVE-Funktionen in Kapitel 5.- 11.6 DERIVE-Funktionen in Kapitel 6.- 11.7 DERIVE-Funktionen in Kapitel 8.- 11.8 DERIVE-Funktionen in Kapitel 9.- 12 Quellennachweise.- Das DERIVE-Menü.- DERIVE Stichwortverzeichnis.- Stichwortverzeichnis.
1 Geometrie.- 1.1 Dreiecksgeometrie ohne Trigonometrie.- 1.2 Graphische Darstellung der Dreiecksgeometrie.- 1.3 Gleichseitige Dreiecke.- 1.4 Dreiecksgeometrie mit Trigonometrie.- 1.5 Iterative Berechnung der Kreiszahl ?.- 2 Kurven zweiter Ordnung.- 2.1 Die Ellipse.- 2.2 Die Parabel.- 2.3 Die Hyperbel.- 2.4 Drehungen.- 2.5 Polarkoordinatendarstellungen.- 3 Iterationsverfahren.- 3.1 Iteration und Fixpunkte.- 3.2 Das Newtonverfahren.- 3.3 Divergente und chaotische Iteration.- 3.4 Das Bisektionsverfahren.- 3.5 Verbessertes Newtonverfahren.- 4 Interpolationspolynome.- 4.1 Die Formel von Lagrange.- 4.2 Polynomapproximation von Funktionen.- 4.3 Genauere Näherungswerte trigonometrischer Funktionen.- 4.4 Fehlerrechnung für die Lagrange-Interpolation.- 4.5 Das Sinusprodukt.- 5 Flächenberechnung.- 5.1 Regelmäßige arithmetische Zerlegungen.- 5.2 Regelmäßige geometrische Zerlegungen.- 5.3 Numerische Integration.- 5.4 Graphische Darstellung der Integrationsverfahren.- 5.5 Volumina und Oberflächen von Rotationskörpern.- 6 Partielle Integration.- 6.1 Unbestimmte Integration.- 6.2 Integrale von Potenzen.- 6.3 Bestimmte Integration.- 6.4 Schlecht konditionierte Probleme.- 6.5 Integrale, bei denen DERIVE scheitert.- 7 Potenzreihen.- 7.1 Integralformeln mit DERIVE.- 7.2 Beweis durch Substitution.- 7.3 Die Logarithmus- und Arkustangensreihe.- 7.4 Randverhalten der Reihen.- 7.5 Die Exponentialreihe.- 8 Die Goldbachsche Vermutung.- 8.1 Goldbachzerlegungen.- 8.2 Asymptotische Betrachtungen.- 8.3 Goldbachzerlegungen großer ganzer Zahlen.- 9 Lineare Gleichungssysteme und Matrizen.- 9.1 Lineare Gleichungssysteme.- 9.2 Matrizen und Kondition.- 9.3 Die Hilbertmatrix.- 10 Einfache Differentialgleichungen.- 10.1 Warum Differentialgleichungen?.- 10.2 Trennung der Variablen.- 10.3Orthogonaltrajektorien.- 10.4 Lineare Differentialgleichungen erster Ordnung.- 10.5 Die Schwingungsgleichung.- 11 DERIVE-Funktionen.- 11.1 DERIVE-Funktionen in Kapitel 1.- 11.2 DERIVE-Funktionen in Kapitel 2.- 11.3 DERIVE-Funktionen in Kapitel 3.- 11.4 DERIVE-Funktionen in Kapitel 4.- 11.5 DERIVE-Funktionen in Kapitel 5.- 11.6 DERIVE-Funktionen in Kapitel 6.- 11.7 DERIVE-Funktionen in Kapitel 8.- 11.8 DERIVE-Funktionen in Kapitel 9.- 12 Quellennachweise.- Das DERIVE-Menü.- DERIVE Stichwortverzeichnis.- Stichwortverzeichnis.