Qingsong Xu
Design and Implementation of Large-Range Compliant Micropositioning Systems (eBook, PDF)
117,99 €
117,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
117,99 €
Als Download kaufen
117,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
117,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Qingsong Xu
Design and Implementation of Large-Range Compliant Micropositioning Systems (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
An innovative and timely guide to the modeling, design and implementation of large-range compliant micropositioning systems based on flexure hinges * Features innovative compact mechanism designs for large-range translational and rotational positioning * Provides original and concise treatment of various flexure hinges with well-presented design and control methods * Focuses on design implementation and applications through detailed examples
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.78MB
An innovative and timely guide to the modeling, design and implementation of large-range compliant micropositioning systems based on flexure hinges * Features innovative compact mechanism designs for large-range translational and rotational positioning * Provides original and concise treatment of various flexure hinges with well-presented design and control methods * Focuses on design implementation and applications through detailed examples
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 296
- Erscheinungstermin: 2. September 2016
- Englisch
- ISBN-13: 9781119131465
- Artikelnr.: 45959465
- Verlag: John Wiley & Sons
- Seitenzahl: 296
- Erscheinungstermin: 2. September 2016
- Englisch
- ISBN-13: 9781119131465
- Artikelnr.: 45959465
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Assistant Professor Qingsong Xu, University of Macau, China, has been working in the area of micro/nano-mechatronics and robotics including design and precision control of micro/nano-positioning systems for over 10 years. He has published over 140 peer-reviewed papers in journals and conferences in related domains.
Preface xiii
Acknowledgments xvii
1 Introduction 1
1.1 Micropositioning Techniques 1
1.2 Compliant Guiding Mechanisms 2
1.2.1 Basic Flexure Hinges 2
1.2.2 Translational Flexure Hinges 3
1.2.3 Translational Positioning Mechanisms 4
1.2.4 Rotational Positioning Mechanisms 8
1.2.5 Multi-Stroke Positioning Mechanisms 10
1.3 Actuation and Sensing 11
1.4 Control Issues 12
1.5 Book Outline 14
References 14
Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS
2 Uniaxial Flexure Stage 21
2.1 Concept of MCPF 21
2.1.1 Limitation of Conventional Flexures 21
2.1.2 Proposal of MCPF 23
2.2 Design of a Large-Range Flexure Stage 25
2.2.1 Mechanism Design 25
2.2.2 Analytical Modeling 26
2.2.3 Architecture Optimization 29
2.2.4 Structure Improvement 31
2.3 Prototype Development and Performance Testings 33
2.3.1 Statics Performance Testing 34
2.3.2 Dynamics Performance Testing 35
2.4 Sliding Mode Controller Design 35
2.4.1 Dynamics Modeling 35
2.4.2 DSMC Design 36
2.5 Experimental Studies 38
2.5.1 Plant Model Identification 38
2.5.2 Controller Setup 39
2.5.3 Set-Point Positioning Results 39
2.5.4 Sinusoidal Positioning Results 41
2.6 Conclusion 42
References 44
3 XY Flexure Stage 45
3.1 Introduction 45
3.2 XY Stage Design 46
3.2.1 Decoupled XY Stage Design with MCPF 46
3.2.2 Buckling/Bending Effect Consideration 49
3.2.3 Actuation Issues 51
3.3 Model Verification and Prototype Development 52
3.3.1 Performance Assessment with FEA Simulation 52
3.3.2 Prototype Fabrication 54
3.3.3 Open-Loop Experimental Results 54
3.4 EMPC Control Scheme Design 55
3.4.1 Problem Formulation 56
3.4.2 EMPC Scheme Design 57
3.4.3 State Observer Design 60
3.4.4 Tracking Error Analysis 61
3.5 Simulation and Experimental Studies 61
3.5.1 Plant Model Identification 61
3.5.2 Controller Parameter Design 64
3.5.3 Simulation Studies and Discussion 64
3.5.4 Experimental Results and Discussion 66
3.6 Conclusion 67
References 69
4 Two-Layer XY Flexure Stage 70
4.1 Introduction 70
4.2 Mechanism Design 71
4.2.1 Design of a Two-Layer XY Stage with MCPF 71
4.2.2 Structure Improvement of the XY Stage 72
4.3 Parametric Design 73
4.3.1 Motion Range Design 73
4.3.2 Stiffness and Actuation Force Design 74
4.3.3 Critical Load of Buckling 75
4.3.4 Resonant Frequency 75
4.3.5 Out-of-Plane Payload Capability 76
4.3.6 Influences of Manufacturing Tolerance 77
4.4 Experimental Studies and Results 79
4.4.1 Prototype Development 80
4.4.2 Statics Performance Testing 80
4.4.3 Dynamics Performance Testing 81
4.4.4 Positioning Performance Testing 83
4.4.5 Contouring Performance Testing 84
4.4.6 Control Bandwidth Testing 86
4.4.7 Discussion and Future Work 88
4.5 Conclusion 89
References 89
Part II MULTI-STROKE TRANSLATIONAL MICROPOSITIONING SYSTEMS
5 Dual-Stroke Uniaxial Flexure Stage 93
5.1 Introduction 93
5.2 Mechanism Design and Analysis 94
5.2.1 Mechanism Design to Minimize Interference Behavior 94
<
Acknowledgments xvii
1 Introduction 1
1.1 Micropositioning Techniques 1
1.2 Compliant Guiding Mechanisms 2
1.2.1 Basic Flexure Hinges 2
1.2.2 Translational Flexure Hinges 3
1.2.3 Translational Positioning Mechanisms 4
1.2.4 Rotational Positioning Mechanisms 8
1.2.5 Multi-Stroke Positioning Mechanisms 10
1.3 Actuation and Sensing 11
1.4 Control Issues 12
1.5 Book Outline 14
References 14
Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS
2 Uniaxial Flexure Stage 21
2.1 Concept of MCPF 21
2.1.1 Limitation of Conventional Flexures 21
2.1.2 Proposal of MCPF 23
2.2 Design of a Large-Range Flexure Stage 25
2.2.1 Mechanism Design 25
2.2.2 Analytical Modeling 26
2.2.3 Architecture Optimization 29
2.2.4 Structure Improvement 31
2.3 Prototype Development and Performance Testings 33
2.3.1 Statics Performance Testing 34
2.3.2 Dynamics Performance Testing 35
2.4 Sliding Mode Controller Design 35
2.4.1 Dynamics Modeling 35
2.4.2 DSMC Design 36
2.5 Experimental Studies 38
2.5.1 Plant Model Identification 38
2.5.2 Controller Setup 39
2.5.3 Set-Point Positioning Results 39
2.5.4 Sinusoidal Positioning Results 41
2.6 Conclusion 42
References 44
3 XY Flexure Stage 45
3.1 Introduction 45
3.2 XY Stage Design 46
3.2.1 Decoupled XY Stage Design with MCPF 46
3.2.2 Buckling/Bending Effect Consideration 49
3.2.3 Actuation Issues 51
3.3 Model Verification and Prototype Development 52
3.3.1 Performance Assessment with FEA Simulation 52
3.3.2 Prototype Fabrication 54
3.3.3 Open-Loop Experimental Results 54
3.4 EMPC Control Scheme Design 55
3.4.1 Problem Formulation 56
3.4.2 EMPC Scheme Design 57
3.4.3 State Observer Design 60
3.4.4 Tracking Error Analysis 61
3.5 Simulation and Experimental Studies 61
3.5.1 Plant Model Identification 61
3.5.2 Controller Parameter Design 64
3.5.3 Simulation Studies and Discussion 64
3.5.4 Experimental Results and Discussion 66
3.6 Conclusion 67
References 69
4 Two-Layer XY Flexure Stage 70
4.1 Introduction 70
4.2 Mechanism Design 71
4.2.1 Design of a Two-Layer XY Stage with MCPF 71
4.2.2 Structure Improvement of the XY Stage 72
4.3 Parametric Design 73
4.3.1 Motion Range Design 73
4.3.2 Stiffness and Actuation Force Design 74
4.3.3 Critical Load of Buckling 75
4.3.4 Resonant Frequency 75
4.3.5 Out-of-Plane Payload Capability 76
4.3.6 Influences of Manufacturing Tolerance 77
4.4 Experimental Studies and Results 79
4.4.1 Prototype Development 80
4.4.2 Statics Performance Testing 80
4.4.3 Dynamics Performance Testing 81
4.4.4 Positioning Performance Testing 83
4.4.5 Contouring Performance Testing 84
4.4.6 Control Bandwidth Testing 86
4.4.7 Discussion and Future Work 88
4.5 Conclusion 89
References 89
Part II MULTI-STROKE TRANSLATIONAL MICROPOSITIONING SYSTEMS
5 Dual-Stroke Uniaxial Flexure Stage 93
5.1 Introduction 93
5.2 Mechanism Design and Analysis 94
5.2.1 Mechanism Design to Minimize Interference Behavior 94
<
Preface xiii
Acknowledgments xvii
1 Introduction 1
1.1 Micropositioning Techniques 1
1.2 Compliant Guiding Mechanisms 2
1.2.1 Basic Flexure Hinges 2
1.2.2 Translational Flexure Hinges 3
1.2.3 Translational Positioning Mechanisms 4
1.2.4 Rotational Positioning Mechanisms 8
1.2.5 Multi-Stroke Positioning Mechanisms 10
1.3 Actuation and Sensing 11
1.4 Control Issues 12
1.5 Book Outline 14
References 14
Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS
2 Uniaxial Flexure Stage 21
2.1 Concept of MCPF 21
2.1.1 Limitation of Conventional Flexures 21
2.1.2 Proposal of MCPF 23
2.2 Design of a Large-Range Flexure Stage 25
2.2.1 Mechanism Design 25
2.2.2 Analytical Modeling 26
2.2.3 Architecture Optimization 29
2.2.4 Structure Improvement 31
2.3 Prototype Development and Performance Testings 33
2.3.1 Statics Performance Testing 34
2.3.2 Dynamics Performance Testing 35
2.4 Sliding Mode Controller Design 35
2.4.1 Dynamics Modeling 35
2.4.2 DSMC Design 36
2.5 Experimental Studies 38
2.5.1 Plant Model Identification 38
2.5.2 Controller Setup 39
2.5.3 Set-Point Positioning Results 39
2.5.4 Sinusoidal Positioning Results 41
2.6 Conclusion 42
References 44
3 XY Flexure Stage 45
3.1 Introduction 45
3.2 XY Stage Design 46
3.2.1 Decoupled XY Stage Design with MCPF 46
3.2.2 Buckling/Bending Effect Consideration 49
3.2.3 Actuation Issues 51
3.3 Model Verification and Prototype Development 52
3.3.1 Performance Assessment with FEA Simulation 52
3.3.2 Prototype Fabrication 54
3.3.3 Open-Loop Experimental Results 54
3.4 EMPC Control Scheme Design 55
3.4.1 Problem Formulation 56
3.4.2 EMPC Scheme Design 57
3.4.3 State Observer Design 60
3.4.4 Tracking Error Analysis 61
3.5 Simulation and Experimental Studies 61
3.5.1 Plant Model Identification 61
3.5.2 Controller Parameter Design 64
3.5.3 Simulation Studies and Discussion 64
3.5.4 Experimental Results and Discussion 66
3.6 Conclusion 67
References 69
4 Two-Layer XY Flexure Stage 70
4.1 Introduction 70
4.2 Mechanism Design 71
4.2.1 Design of a Two-Layer XY Stage with MCPF 71
4.2.2 Structure Improvement of the XY Stage 72
4.3 Parametric Design 73
4.3.1 Motion Range Design 73
4.3.2 Stiffness and Actuation Force Design 74
4.3.3 Critical Load of Buckling 75
4.3.4 Resonant Frequency 75
4.3.5 Out-of-Plane Payload Capability 76
4.3.6 Influences of Manufacturing Tolerance 77
4.4 Experimental Studies and Results 79
4.4.1 Prototype Development 80
4.4.2 Statics Performance Testing 80
4.4.3 Dynamics Performance Testing 81
4.4.4 Positioning Performance Testing 83
4.4.5 Contouring Performance Testing 84
4.4.6 Control Bandwidth Testing 86
4.4.7 Discussion and Future Work 88
4.5 Conclusion 89
References 89
Part II MULTI-STROKE TRANSLATIONAL MICROPOSITIONING SYSTEMS
5 Dual-Stroke Uniaxial Flexure Stage 93
5.1 Introduction 93
5.2 Mechanism Design and Analysis 94
5.2.1 Mechanism Design to Minimize Interference Behavior 94
<
Acknowledgments xvii
1 Introduction 1
1.1 Micropositioning Techniques 1
1.2 Compliant Guiding Mechanisms 2
1.2.1 Basic Flexure Hinges 2
1.2.2 Translational Flexure Hinges 3
1.2.3 Translational Positioning Mechanisms 4
1.2.4 Rotational Positioning Mechanisms 8
1.2.5 Multi-Stroke Positioning Mechanisms 10
1.3 Actuation and Sensing 11
1.4 Control Issues 12
1.5 Book Outline 14
References 14
Part I LARGE-RANGE TRANSLATIONAL MICROPOSITIONING SYSTEMS
2 Uniaxial Flexure Stage 21
2.1 Concept of MCPF 21
2.1.1 Limitation of Conventional Flexures 21
2.1.2 Proposal of MCPF 23
2.2 Design of a Large-Range Flexure Stage 25
2.2.1 Mechanism Design 25
2.2.2 Analytical Modeling 26
2.2.3 Architecture Optimization 29
2.2.4 Structure Improvement 31
2.3 Prototype Development and Performance Testings 33
2.3.1 Statics Performance Testing 34
2.3.2 Dynamics Performance Testing 35
2.4 Sliding Mode Controller Design 35
2.4.1 Dynamics Modeling 35
2.4.2 DSMC Design 36
2.5 Experimental Studies 38
2.5.1 Plant Model Identification 38
2.5.2 Controller Setup 39
2.5.3 Set-Point Positioning Results 39
2.5.4 Sinusoidal Positioning Results 41
2.6 Conclusion 42
References 44
3 XY Flexure Stage 45
3.1 Introduction 45
3.2 XY Stage Design 46
3.2.1 Decoupled XY Stage Design with MCPF 46
3.2.2 Buckling/Bending Effect Consideration 49
3.2.3 Actuation Issues 51
3.3 Model Verification and Prototype Development 52
3.3.1 Performance Assessment with FEA Simulation 52
3.3.2 Prototype Fabrication 54
3.3.3 Open-Loop Experimental Results 54
3.4 EMPC Control Scheme Design 55
3.4.1 Problem Formulation 56
3.4.2 EMPC Scheme Design 57
3.4.3 State Observer Design 60
3.4.4 Tracking Error Analysis 61
3.5 Simulation and Experimental Studies 61
3.5.1 Plant Model Identification 61
3.5.2 Controller Parameter Design 64
3.5.3 Simulation Studies and Discussion 64
3.5.4 Experimental Results and Discussion 66
3.6 Conclusion 67
References 69
4 Two-Layer XY Flexure Stage 70
4.1 Introduction 70
4.2 Mechanism Design 71
4.2.1 Design of a Two-Layer XY Stage with MCPF 71
4.2.2 Structure Improvement of the XY Stage 72
4.3 Parametric Design 73
4.3.1 Motion Range Design 73
4.3.2 Stiffness and Actuation Force Design 74
4.3.3 Critical Load of Buckling 75
4.3.4 Resonant Frequency 75
4.3.5 Out-of-Plane Payload Capability 76
4.3.6 Influences of Manufacturing Tolerance 77
4.4 Experimental Studies and Results 79
4.4.1 Prototype Development 80
4.4.2 Statics Performance Testing 80
4.4.3 Dynamics Performance Testing 81
4.4.4 Positioning Performance Testing 83
4.4.5 Contouring Performance Testing 84
4.4.6 Control Bandwidth Testing 86
4.4.7 Discussion and Future Work 88
4.5 Conclusion 89
References 89
Part II MULTI-STROKE TRANSLATIONAL MICROPOSITIONING SYSTEMS
5 Dual-Stroke Uniaxial Flexure Stage 93
5.1 Introduction 93
5.2 Mechanism Design and Analysis 94
5.2.1 Mechanism Design to Minimize Interference Behavior 94
<