Design Automation: Automated Full-Custom VLSI Layout Using the ULYSSES Design Environment deals with the use of the Ulysses design environment for an automated full-custom VLSI layout. Topics covered include VLSI chip design and design process, control mechanisms in Ulysses, and the use of artificial intelligence (AI) in design environments. An example design task is also presented.
This book is comprised of 10 chapters and begins with an overview of VLSI computer-aided design (CAD), focusing on an expert system based design environment aimed at solving the CAD tool integration problem. An example CAD tool suite for such an environment is presented. The next chapter describes prior attempts at developing an integrated design environment, followed by a discussion on the computer-aided VLSI design process that motivated the development of the Ulysses design environment. The following chapters explore the use of AI techniques within Ulysses; the fundamental architecture of Ulysses; and the control mechanisms that govern the decision to execute various CAD tools, on particular files, within Ulysses. The implementation of Ulysses is also discussed. The final chapter demonstrates the feasibility of a knowledge-based design environment for VLSI chip design applications; the success of Ulysses at further automating the VLSI design process; and the usability of Ulysses as a VLSI design environment.
This monograph will be a valuable resource for systems designers and other practitioners in computer science and computer engineering.
This book is comprised of 10 chapters and begins with an overview of VLSI computer-aided design (CAD), focusing on an expert system based design environment aimed at solving the CAD tool integration problem. An example CAD tool suite for such an environment is presented. The next chapter describes prior attempts at developing an integrated design environment, followed by a discussion on the computer-aided VLSI design process that motivated the development of the Ulysses design environment. The following chapters explore the use of AI techniques within Ulysses; the fundamental architecture of Ulysses; and the control mechanisms that govern the decision to execute various CAD tools, on particular files, within Ulysses. The implementation of Ulysses is also discussed. The final chapter demonstrates the feasibility of a knowledge-based design environment for VLSI chip design applications; the success of Ulysses at further automating the VLSI design process; and the usability of Ulysses as a VLSI design environment.
This monograph will be a valuable resource for systems designers and other practitioners in computer science and computer engineering.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.