K. C. Selvam
Design of Function Circuits with 555 Timer Integrated Circuit (eBook, PDF)
51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
51,95 €
Als Download kaufen
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
K. C. Selvam
Design of Function Circuits with 555 Timer Integrated Circuit (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This comprehensive book covers the design of function circuits with the help of 555 timer integrated circuits in a single volume. It further discusses how derived function circuits are implemented with integrator, comparator, low pass filter, peak detector, and sample and hold circuits.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 18.45MB
Andere Kunden interessierten sich auch für
- K. C. SelvamAnalog Function Circuits (eBook, PDF)49,95 €
- K. C. SelvamDesign of Function Circuits with 555 Timer Integrated Circuit (eBook, ePUB)51,95 €
- Kc SelvamMultiplier-Cum-Divider Circuits (eBook, PDF)48,95 €
- Pooja MohindruElectronic Circuit Analysis using LTSpice XVII Simulator (eBook, PDF)48,95 €
- Aftab M. HussainIntroduction to Flexible Electronics (eBook, PDF)49,95 €
- Jagannathan SarangapaniOptimal Networked Control Systems with MATLAB (eBook, PDF)72,95 €
- Embedded Devices and Internet of Things (eBook, PDF)169,95 €
-
-
-
This comprehensive book covers the design of function circuits with the help of 555 timer integrated circuits in a single volume. It further discusses how derived function circuits are implemented with integrator, comparator, low pass filter, peak detector, and sample and hold circuits.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 242
- Erscheinungstermin: 13. Februar 2023
- Englisch
- ISBN-13: 9781000832532
- Artikelnr.: 67297522
- Verlag: Taylor & Francis
- Seitenzahl: 242
- Erscheinungstermin: 13. Februar 2023
- Englisch
- ISBN-13: 9781000832532
- Artikelnr.: 67297522
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. K.C. Selvam was born on 2nd April 1968 in Krishnagiri district of tamil nadu state, India. He obtained Diploma in electronics and communication engineering from government polytechnic college, Krishnagiri, Tamil Nadu, India in 1986. He was graduated by the Institution of Electronics and Telecommunication Engineers, New Delhi, in the year 1994. He got honorary Ph.D Degree from University of Swahili, Government of Panama in the year 2020.
He is doing research and development work from last 33 years and has published more than 33 research papers in various national and international journals. He also published the following technical and scientific books in international publishers.
1. K.C.Selvam , "Design of analog multipliers using Operational Amplifiers" CRC Press, Taylor and Francis, New York and London, July 2019 DOI:10.1201/9780429277450, ISBN: 9780429277450
2. K.C.Selvam, "Multiplier - cum - divider Circuits; Principles, Design and Applications", CRC Press, Taylor and Francis, New York and London
June 2021, DOI:10.1201/9781003168515, ISBN: 9781003168515
3. K.C.Selvam, "Analog Function Circuits; Fundamentals, Principles, Design and Applications" CRC Press, Taylor and Francis, New York and London, December 2021, ISBN 9781032081601
4. K.C.Selvam, "Design of Function Circuits with 555 timer IC" accepted and to be published in CRC Press, Taylor and Francis
5. K.C.Selvam, "Principles of Function Circuits", Lambert Academic Publishing, Germany, ISBN-13: 9786200532411
6. K.C.Selvam, "Analog Dividing Circuits", Lambert Academic Publishing , Germany, SBN-13: 978-6200653987, ISBN-10: 6200653984
He got 'best paper award' by IETE in the year 1996. He got 'students journal award' of IETE in the year 2017. In the year 2021, he received 'Life Time Achievement Award ' from the Institute of Researchers, Wayanad, Kerala, India. At present he is working as a scientific staff in the Department of Electrical Engineering, Indian Institute of Technology, Madras, India.
He is doing research and development work from last 33 years and has published more than 33 research papers in various national and international journals. He also published the following technical and scientific books in international publishers.
1. K.C.Selvam , "Design of analog multipliers using Operational Amplifiers" CRC Press, Taylor and Francis, New York and London, July 2019 DOI:10.1201/9780429277450, ISBN: 9780429277450
2. K.C.Selvam, "Multiplier - cum - divider Circuits; Principles, Design and Applications", CRC Press, Taylor and Francis, New York and London
June 2021, DOI:10.1201/9781003168515, ISBN: 9781003168515
3. K.C.Selvam, "Analog Function Circuits; Fundamentals, Principles, Design and Applications" CRC Press, Taylor and Francis, New York and London, December 2021, ISBN 9781032081601
4. K.C.Selvam, "Design of Function Circuits with 555 timer IC" accepted and to be published in CRC Press, Taylor and Francis
5. K.C.Selvam, "Principles of Function Circuits", Lambert Academic Publishing, Germany, ISBN-13: 9786200532411
6. K.C.Selvam, "Analog Dividing Circuits", Lambert Academic Publishing , Germany, SBN-13: 978-6200653987, ISBN-10: 6200653984
He got 'best paper award' by IETE in the year 1996. He got 'students journal award' of IETE in the year 2017. In the year 2021, he received 'Life Time Achievement Award ' from the Institute of Researchers, Wayanad, Kerala, India. At present he is working as a scientific staff in the Department of Electrical Engineering, Indian Institute of Technology, Madras, India.
Chapter 1: Multiplexing Time Division Multipliers
1.1: Saw tooth wave referenced TDM
1.2: Triangular wave referenced TDM
1.3: TDM using no reference - type I
1.4: TDM using no reference - type II
1.5: TDM using 555 astable multivibrator
Chapter 2: Switching Time Division Multiplier
2.1: Saw tooth wave referenced
2.2: Triangular wave referenced
2.3: No reference - type I
2.4: No reference - type II
2.5: 555 astable as multiplier
2.6 555 monostable as multiplier
Chapter 3: Multiplexing Time Division Divider
3.1 Saw tooth wave referenced TDD
3.2 Triangular wave referenced TDD
3.3 TDD using no reference - type I
3.4 TDD using no reference - type II
3.5 TDD using 555 astable multivibrator
3.6: TDD using 555 monostable multivibrator
Chapter 4: Switching Time Division Divider
4.1 Saw tooth wave referenced TDD
4.2 Triangular wave referenced TDD
4.3 TDD using no reference - type I
4.4 TDD using no reference - type II
4.5 TDD using 555 astable multivibrator
4.6 TDD using 555 monostable multivibrator
Chapter 5: Multiplexing Time Division MCD
5.1: Saw tooth wave referenced MCD
5.2: Triangular wave referenced MCD
5.3 MCD using 555 Astable multivibrator
5.4 MCD using 555 monostable multivibrator
Chapter 6: Switching Time Division MCD
6.1 Saw tooth wave referenced
6.2 Triangular wave referenced
6.3 MCD using 555 astable multivibrator
6.4 555 Monostable as MCD
Chapter 7: Multiplexing Peak Responding MCD
7.1 Double single slope peak responding MCD
7.2 Double dual slope peak responding MCD with flip flop
7.3 Pulse Width Integrated MCD
7.4 Pulse position responding MCD
Chapter 8: Switching Peak Responding MCD
8.1 Double single slope peak responding MCD
8.2 Double dual slope peak responding MCD
8.3 Pulse Width Integrated MCD
8.4 Pulse position responding MCD
Chapter 9: Multiplexing Time Division Square Rooter
9.1: Saw tooth wave referenced TDSR
9.2: Triangular wave referenced TDSR
9.3: TDSR using no reference - type I
9.4: TDSR using no reference - type II
9.5: TDSR using 555 astable multivibrator
9.6: TDSR using 555 monostable multivibrator
Chapter 10: Switching Time Division Square Rooter
10.1: Saw tooth wave referenced TDSR
10.2: Triangular wave referenced TDSR
10.3: TDSR using no reference - type I
10.4: TDSR using no reference - type II
10.5: TDSR using 555 astable multivibrator
10.6: TDSR using 555 monostable multivibrator
Chapter 11: Multiplexing Time Division VMC - Part I
11.1 Saw tooth wave referenced VMC
11.2 Triangular wave referenced VMC
11.3 VMC using 555 Astable multivibrator
11.4 Square wave referenced VMC
11.5 VMC using 555 monostable multivibrator
11.6 Time division VMC with no reference
Chapter 12: Multiplexing Time Division VMC - Part II
12.1 No reference - type I
12.2 No reference - type II
12.3 No reference - type III
12.4 No reference - type IV
12.5 No reference - type V
12.6 No reference - type VI
1.1: Saw tooth wave referenced TDM
1.2: Triangular wave referenced TDM
1.3: TDM using no reference - type I
1.4: TDM using no reference - type II
1.5: TDM using 555 astable multivibrator
Chapter 2: Switching Time Division Multiplier
2.1: Saw tooth wave referenced
2.2: Triangular wave referenced
2.3: No reference - type I
2.4: No reference - type II
2.5: 555 astable as multiplier
2.6 555 monostable as multiplier
Chapter 3: Multiplexing Time Division Divider
3.1 Saw tooth wave referenced TDD
3.2 Triangular wave referenced TDD
3.3 TDD using no reference - type I
3.4 TDD using no reference - type II
3.5 TDD using 555 astable multivibrator
3.6: TDD using 555 monostable multivibrator
Chapter 4: Switching Time Division Divider
4.1 Saw tooth wave referenced TDD
4.2 Triangular wave referenced TDD
4.3 TDD using no reference - type I
4.4 TDD using no reference - type II
4.5 TDD using 555 astable multivibrator
4.6 TDD using 555 monostable multivibrator
Chapter 5: Multiplexing Time Division MCD
5.1: Saw tooth wave referenced MCD
5.2: Triangular wave referenced MCD
5.3 MCD using 555 Astable multivibrator
5.4 MCD using 555 monostable multivibrator
Chapter 6: Switching Time Division MCD
6.1 Saw tooth wave referenced
6.2 Triangular wave referenced
6.3 MCD using 555 astable multivibrator
6.4 555 Monostable as MCD
Chapter 7: Multiplexing Peak Responding MCD
7.1 Double single slope peak responding MCD
7.2 Double dual slope peak responding MCD with flip flop
7.3 Pulse Width Integrated MCD
7.4 Pulse position responding MCD
Chapter 8: Switching Peak Responding MCD
8.1 Double single slope peak responding MCD
8.2 Double dual slope peak responding MCD
8.3 Pulse Width Integrated MCD
8.4 Pulse position responding MCD
Chapter 9: Multiplexing Time Division Square Rooter
9.1: Saw tooth wave referenced TDSR
9.2: Triangular wave referenced TDSR
9.3: TDSR using no reference - type I
9.4: TDSR using no reference - type II
9.5: TDSR using 555 astable multivibrator
9.6: TDSR using 555 monostable multivibrator
Chapter 10: Switching Time Division Square Rooter
10.1: Saw tooth wave referenced TDSR
10.2: Triangular wave referenced TDSR
10.3: TDSR using no reference - type I
10.4: TDSR using no reference - type II
10.5: TDSR using 555 astable multivibrator
10.6: TDSR using 555 monostable multivibrator
Chapter 11: Multiplexing Time Division VMC - Part I
11.1 Saw tooth wave referenced VMC
11.2 Triangular wave referenced VMC
11.3 VMC using 555 Astable multivibrator
11.4 Square wave referenced VMC
11.5 VMC using 555 monostable multivibrator
11.6 Time division VMC with no reference
Chapter 12: Multiplexing Time Division VMC - Part II
12.1 No reference - type I
12.2 No reference - type II
12.3 No reference - type III
12.4 No reference - type IV
12.5 No reference - type V
12.6 No reference - type VI
Chapter 1: Multiplexing Time Division Multipliers
1.1: Saw tooth wave referenced TDM
1.2: Triangular wave referenced TDM
1.3: TDM using no reference - type I
1.4: TDM using no reference - type II
1.5: TDM using 555 astable multivibrator
Chapter 2: Switching Time Division Multiplier
2.1: Saw tooth wave referenced
2.2: Triangular wave referenced
2.3: No reference - type I
2.4: No reference - type II
2.5: 555 astable as multiplier
2.6 555 monostable as multiplier
Chapter 3: Multiplexing Time Division Divider
3.1 Saw tooth wave referenced TDD
3.2 Triangular wave referenced TDD
3.3 TDD using no reference - type I
3.4 TDD using no reference - type II
3.5 TDD using 555 astable multivibrator
3.6: TDD using 555 monostable multivibrator
Chapter 4: Switching Time Division Divider
4.1 Saw tooth wave referenced TDD
4.2 Triangular wave referenced TDD
4.3 TDD using no reference - type I
4.4 TDD using no reference - type II
4.5 TDD using 555 astable multivibrator
4.6 TDD using 555 monostable multivibrator
Chapter 5: Multiplexing Time Division MCD
5.1: Saw tooth wave referenced MCD
5.2: Triangular wave referenced MCD
5.3 MCD using 555 Astable multivibrator
5.4 MCD using 555 monostable multivibrator
Chapter 6: Switching Time Division MCD
6.1 Saw tooth wave referenced
6.2 Triangular wave referenced
6.3 MCD using 555 astable multivibrator
6.4 555 Monostable as MCD
Chapter 7: Multiplexing Peak Responding MCD
7.1 Double single slope peak responding MCD
7.2 Double dual slope peak responding MCD with flip flop
7.3 Pulse Width Integrated MCD
7.4 Pulse position responding MCD
Chapter 8: Switching Peak Responding MCD
8.1 Double single slope peak responding MCD
8.2 Double dual slope peak responding MCD
8.3 Pulse Width Integrated MCD
8.4 Pulse position responding MCD
Chapter 9: Multiplexing Time Division Square Rooter
9.1: Saw tooth wave referenced TDSR
9.2: Triangular wave referenced TDSR
9.3: TDSR using no reference - type I
9.4: TDSR using no reference - type II
9.5: TDSR using 555 astable multivibrator
9.6: TDSR using 555 monostable multivibrator
Chapter 10: Switching Time Division Square Rooter
10.1: Saw tooth wave referenced TDSR
10.2: Triangular wave referenced TDSR
10.3: TDSR using no reference - type I
10.4: TDSR using no reference - type II
10.5: TDSR using 555 astable multivibrator
10.6: TDSR using 555 monostable multivibrator
Chapter 11: Multiplexing Time Division VMC - Part I
11.1 Saw tooth wave referenced VMC
11.2 Triangular wave referenced VMC
11.3 VMC using 555 Astable multivibrator
11.4 Square wave referenced VMC
11.5 VMC using 555 monostable multivibrator
11.6 Time division VMC with no reference
Chapter 12: Multiplexing Time Division VMC - Part II
12.1 No reference - type I
12.2 No reference - type II
12.3 No reference - type III
12.4 No reference - type IV
12.5 No reference - type V
12.6 No reference - type VI
1.1: Saw tooth wave referenced TDM
1.2: Triangular wave referenced TDM
1.3: TDM using no reference - type I
1.4: TDM using no reference - type II
1.5: TDM using 555 astable multivibrator
Chapter 2: Switching Time Division Multiplier
2.1: Saw tooth wave referenced
2.2: Triangular wave referenced
2.3: No reference - type I
2.4: No reference - type II
2.5: 555 astable as multiplier
2.6 555 monostable as multiplier
Chapter 3: Multiplexing Time Division Divider
3.1 Saw tooth wave referenced TDD
3.2 Triangular wave referenced TDD
3.3 TDD using no reference - type I
3.4 TDD using no reference - type II
3.5 TDD using 555 astable multivibrator
3.6: TDD using 555 monostable multivibrator
Chapter 4: Switching Time Division Divider
4.1 Saw tooth wave referenced TDD
4.2 Triangular wave referenced TDD
4.3 TDD using no reference - type I
4.4 TDD using no reference - type II
4.5 TDD using 555 astable multivibrator
4.6 TDD using 555 monostable multivibrator
Chapter 5: Multiplexing Time Division MCD
5.1: Saw tooth wave referenced MCD
5.2: Triangular wave referenced MCD
5.3 MCD using 555 Astable multivibrator
5.4 MCD using 555 monostable multivibrator
Chapter 6: Switching Time Division MCD
6.1 Saw tooth wave referenced
6.2 Triangular wave referenced
6.3 MCD using 555 astable multivibrator
6.4 555 Monostable as MCD
Chapter 7: Multiplexing Peak Responding MCD
7.1 Double single slope peak responding MCD
7.2 Double dual slope peak responding MCD with flip flop
7.3 Pulse Width Integrated MCD
7.4 Pulse position responding MCD
Chapter 8: Switching Peak Responding MCD
8.1 Double single slope peak responding MCD
8.2 Double dual slope peak responding MCD
8.3 Pulse Width Integrated MCD
8.4 Pulse position responding MCD
Chapter 9: Multiplexing Time Division Square Rooter
9.1: Saw tooth wave referenced TDSR
9.2: Triangular wave referenced TDSR
9.3: TDSR using no reference - type I
9.4: TDSR using no reference - type II
9.5: TDSR using 555 astable multivibrator
9.6: TDSR using 555 monostable multivibrator
Chapter 10: Switching Time Division Square Rooter
10.1: Saw tooth wave referenced TDSR
10.2: Triangular wave referenced TDSR
10.3: TDSR using no reference - type I
10.4: TDSR using no reference - type II
10.5: TDSR using 555 astable multivibrator
10.6: TDSR using 555 monostable multivibrator
Chapter 11: Multiplexing Time Division VMC - Part I
11.1 Saw tooth wave referenced VMC
11.2 Triangular wave referenced VMC
11.3 VMC using 555 Astable multivibrator
11.4 Square wave referenced VMC
11.5 VMC using 555 monostable multivibrator
11.6 Time division VMC with no reference
Chapter 12: Multiplexing Time Division VMC - Part II
12.1 No reference - type I
12.2 No reference - type II
12.3 No reference - type III
12.4 No reference - type IV
12.5 No reference - type V
12.6 No reference - type VI