44,90 €
44,90 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
44,90 €
44,90 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
44,90 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
44,90 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben Behandelt alle Phasen der ML-Produktpipeline | Klar strukturierter Aufbau: Konzepte und Zusammenhänge erschließen sich dadurch schnell | Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte
Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 14.03MB
Produktbeschreibung
Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben
  • Behandelt alle Phasen der ML-Produktpipeline
  • Klar strukturierter Aufbau: Konzepte und Zusammenhänge erschließen sich dadurch schnell
  • Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte


Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu unterstützen. Die Patterns bündeln die Erfahrungen von Hunderten von Experten und bieten einfache, zugängliche Best Practices. In diesem Buch finden Sie detaillierte Erläuterungen zu 30 Patterns für diese Themen: Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Jedes Pattern enthält eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen und Empfehlungen für die Auswahl der besten Technik für Ihre Situation.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Valliappa Lakshmanan ist Global Head für Datenanalyse und KI-Lösungen bei Google Cloud. Sara Robinson ist Developer Advocate im Google-Cloud-Team, sie ist spezialisiert auf Machine Learning. Michael Munn ist ML Solutions Engineer bei Google. Er unterstützt Kunden bei der Entwicklung, Implementierung und Bereitstellung von Machine-Learning-Modellen.