Designing Stock Market Trading Systems (eBook, ePUB)
With and without soft computing
Alle Infos zum eBook verschenken
Designing Stock Market Trading Systems (eBook, ePUB)
With and without soft computing
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In Designing Stock Market Trading Systems Bruce Vanstone and Tobias Hahn guide you through their tried and tested methodology for building rule-based stock market trading systems using both fundamental and technical data. This book shows the steps required to design and test a trading system until a trading edge is found, how to use artificial neural networks and soft computing to discover an edge and exploit it fully. Learn how to build trading systems with greater insight and dependability than ever before Most trading systems today fail to incorporate data from existing research into their…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.64MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
- Produktdetails
- Verlag: Harriman House
- Seitenzahl: 256
- Erscheinungstermin: 20. Mai 2011
- Englisch
- ISBN-13: 9780857191359
- Artikelnr.: 40431072
- Verlag: Harriman House
- Seitenzahl: 256
- Erscheinungstermin: 20. Mai 2011
- Englisch
- ISBN-13: 9780857191359
- Artikelnr.: 40431072
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Systems 1.1 Introduction 1.2 Motivation 1.3 Scope and Data 1.4 The
Efficient Market Hypothesis 1.5 The Illusion of Knowledge 1.6 Investing
versus Trading 1.6.1 Investing 1.6.2 Trading 1.7 Building a Mechanical
Stock Market Trading System 1.8 The Place of Soft Computing 1.9 How to Use
this Book 2. Introduction to Trading 2.1 Introduction 2.2 Different
Approaches to Trading 2.2.1 Direction of trading 2.2.2 Time frame of
trading 2.2.3 Type of behaviour exploited 2.2.3.1 Trend-based trading
2.2.3.2 Breakout trading 2.2.3.3 Momentum trading 2.2.3.4 Mean reversion
trading 2.2.3.5 High-frequency trading 2.3 Conclusion 2.4 The Next Step 3.
Fundamental Variables 3.1 Introduction 3.1.1 Benjamin Graham and value
investing 3.2 Informational Advantage and Market Efficiency 3.3 A Note on
Adjustments 3.4 Core Strategies 3.4.1 Intrinsic value estimates 3.4.2
Fundamental filters 3.4.3 Ranking filters 3.5 The elements of a
fundamentals-based filter 3.5.1 Wealth of a firm and its shareholders
3.5.1.1 Book value 3.5.1.2 Current assets vs. current liabilities 3.5.1.3
Leverage metrics 3.5.2 Earnings capacity 3.5.3 Ability to generate cash 3.6
Fundamental Ratios and Industry Comparisons 3.7 A Final Note on
Cross-country Investing Research 3.8 The Next Step 3.9 Case Study:
Analysing a Variable 3.9.1 Introduction 3.9.2 Example - P/E ratio 3.9.3
Wealth-Lab 3.9.4 SPSS 3.9.5 Outliers 4. Technical Variables 4.1
Introduction 4.1.1 Charting 4.1.2 Technical indicators 4.1.3 Other
approaches 4.2 Charting and Pattern Analysis 4.3 Technical Indicators 4.3.1
Intermarket analysis 4.3.2 Moving averages 4.3.3 Volume 4.3.4 Momentum
indicators 4.3.4.1 Moving Average Convergence/Divergence (MACD) 4.3.4.2
Relative Strength Indicator (RSI) 4.4 Alternative Approaches 4.5 On Use and
Misuse of Technical Analysis 4.6 Case Study: Does Technical Analysis Have
Any Credibility? 5. Soft Computing 5.1 Introduction 5.1.1 Types of soft
computing 5.1.2 Expert systems 5.1.3 Case-based reasoning 5.1.4 Genetic
algorithms 5.1.5 Swarm intelligence 5.1.6 Artificial neural networks 5.2
Review of Research 5.2.1 Soft computing classification 5.2.2 Research into
time series prediction 5.2.3 Research into pattern recognition and
classification 5.2.4 Research into optimisation 5.2.5 Research into
ensemble approaches 5.3 Conclusion 5.4 The Next Step 6. Creating Artificial
Neural Networks 6.1 Introduction 6.2 Expressing Your Problem 6.3
Partitioning Data 6.4 Finding Variables of Influence 6.5 ANN Architecture
Choices 6.6 ANN Training 6.6.1 Momentum 6.6.2 Training rate 6.7 ANN
In-sample Testing 6.8 Conclusion 6.9 The Next Step 7. Trading Systems and
Distributions 7.1 Introduction 7.2 Studying a Group of Trades 7.2.1 Average
profitability metrics 7.2.1.1 The students t-test 7.2.1.2 The runs test
7.2.2 Winning metrics 7.2.3 Losing metrics 7.2.4 Summary metrics 7.2.5
Distributions 7.2.5.1 Short-term distribution 7.2.5.2 Medium-term
distribution 7.2.5.3 Long-term distribution 7.2.6 Comparing two sets of raw
trades 7.3 Conclusions 7.4 The Next Step 8. Position Sizing 8.1
Introduction 8.1.1 Fixed position sizing 8.1.2 Kelly method 8.1.3 Optimal-f
8.1.4 Percentage of equity 8.1.5 Maximum risk percentage 8.1.6 Martingale
8.1.7 Anti-martingale 8.2 Pyramiding 8.3 Conclusions 8.4 The Next Step 9.
Risk 9.1 Introduction 9.2 Trade Risk 9.2.1 Stop-loss orders 9.2.2 Using
maximum adverse excursion (MAE) to select the stop-loss threshold 9.3 Risk
of Ruin 9.4 Portfolio Risk 9.5 Additional Portfolio Metrics 9.6 Monte Carlo
Analysis 9.7 Case Study: Are Stops Useful in Trend Trading System? 10. Case
Studies 10.1 Introduction 10.2 A Note about Data 10.3 A Note about the Case
Studies 10.4 Building a Technical Trading System with Neural Networks
10.4.1 Splitting data 10.4.2 Benchmark initial rules 10.4.3 Identify
specific problems 10.4.4 Identify inputs and outputs for the ANN 10.4.5
Train the networks 10.4.6 Derive money management and risk settings 10.4.7
In-sample benchmarking 10.4.8 Out-of-sample benchmarking 10.4.9 Decide on
final product 10.5 Building a fundamental trading system with neural
networks 10.5.1 Splitting data 10.5.2 Benchmark initial rules 10.5.3
Identify specific problems 10.5.4 Identify inputs and outputs for ANN
10.5.5 Train the networks 10.5.6 Derive money management and risk settings
10.5.7 In-sample benchmarking 10.5.8 Out-of-sample benchmarking 10.5.9
Decide on final product Final Thoughts Appendices Script Segments
Bibliography Index
Systems 1.1 Introduction 1.2 Motivation 1.3 Scope and Data 1.4 The
Efficient Market Hypothesis 1.5 The Illusion of Knowledge 1.6 Investing
versus Trading 1.6.1 Investing 1.6.2 Trading 1.7 Building a Mechanical
Stock Market Trading System 1.8 The Place of Soft Computing 1.9 How to Use
this Book 2. Introduction to Trading 2.1 Introduction 2.2 Different
Approaches to Trading 2.2.1 Direction of trading 2.2.2 Time frame of
trading 2.2.3 Type of behaviour exploited 2.2.3.1 Trend-based trading
2.2.3.2 Breakout trading 2.2.3.3 Momentum trading 2.2.3.4 Mean reversion
trading 2.2.3.5 High-frequency trading 2.3 Conclusion 2.4 The Next Step 3.
Fundamental Variables 3.1 Introduction 3.1.1 Benjamin Graham and value
investing 3.2 Informational Advantage and Market Efficiency 3.3 A Note on
Adjustments 3.4 Core Strategies 3.4.1 Intrinsic value estimates 3.4.2
Fundamental filters 3.4.3 Ranking filters 3.5 The elements of a
fundamentals-based filter 3.5.1 Wealth of a firm and its shareholders
3.5.1.1 Book value 3.5.1.2 Current assets vs. current liabilities 3.5.1.3
Leverage metrics 3.5.2 Earnings capacity 3.5.3 Ability to generate cash 3.6
Fundamental Ratios and Industry Comparisons 3.7 A Final Note on
Cross-country Investing Research 3.8 The Next Step 3.9 Case Study:
Analysing a Variable 3.9.1 Introduction 3.9.2 Example - P/E ratio 3.9.3
Wealth-Lab 3.9.4 SPSS 3.9.5 Outliers 4. Technical Variables 4.1
Introduction 4.1.1 Charting 4.1.2 Technical indicators 4.1.3 Other
approaches 4.2 Charting and Pattern Analysis 4.3 Technical Indicators 4.3.1
Intermarket analysis 4.3.2 Moving averages 4.3.3 Volume 4.3.4 Momentum
indicators 4.3.4.1 Moving Average Convergence/Divergence (MACD) 4.3.4.2
Relative Strength Indicator (RSI) 4.4 Alternative Approaches 4.5 On Use and
Misuse of Technical Analysis 4.6 Case Study: Does Technical Analysis Have
Any Credibility? 5. Soft Computing 5.1 Introduction 5.1.1 Types of soft
computing 5.1.2 Expert systems 5.1.3 Case-based reasoning 5.1.4 Genetic
algorithms 5.1.5 Swarm intelligence 5.1.6 Artificial neural networks 5.2
Review of Research 5.2.1 Soft computing classification 5.2.2 Research into
time series prediction 5.2.3 Research into pattern recognition and
classification 5.2.4 Research into optimisation 5.2.5 Research into
ensemble approaches 5.3 Conclusion 5.4 The Next Step 6. Creating Artificial
Neural Networks 6.1 Introduction 6.2 Expressing Your Problem 6.3
Partitioning Data 6.4 Finding Variables of Influence 6.5 ANN Architecture
Choices 6.6 ANN Training 6.6.1 Momentum 6.6.2 Training rate 6.7 ANN
In-sample Testing 6.8 Conclusion 6.9 The Next Step 7. Trading Systems and
Distributions 7.1 Introduction 7.2 Studying a Group of Trades 7.2.1 Average
profitability metrics 7.2.1.1 The students t-test 7.2.1.2 The runs test
7.2.2 Winning metrics 7.2.3 Losing metrics 7.2.4 Summary metrics 7.2.5
Distributions 7.2.5.1 Short-term distribution 7.2.5.2 Medium-term
distribution 7.2.5.3 Long-term distribution 7.2.6 Comparing two sets of raw
trades 7.3 Conclusions 7.4 The Next Step 8. Position Sizing 8.1
Introduction 8.1.1 Fixed position sizing 8.1.2 Kelly method 8.1.3 Optimal-f
8.1.4 Percentage of equity 8.1.5 Maximum risk percentage 8.1.6 Martingale
8.1.7 Anti-martingale 8.2 Pyramiding 8.3 Conclusions 8.4 The Next Step 9.
Risk 9.1 Introduction 9.2 Trade Risk 9.2.1 Stop-loss orders 9.2.2 Using
maximum adverse excursion (MAE) to select the stop-loss threshold 9.3 Risk
of Ruin 9.4 Portfolio Risk 9.5 Additional Portfolio Metrics 9.6 Monte Carlo
Analysis 9.7 Case Study: Are Stops Useful in Trend Trading System? 10. Case
Studies 10.1 Introduction 10.2 A Note about Data 10.3 A Note about the Case
Studies 10.4 Building a Technical Trading System with Neural Networks
10.4.1 Splitting data 10.4.2 Benchmark initial rules 10.4.3 Identify
specific problems 10.4.4 Identify inputs and outputs for the ANN 10.4.5
Train the networks 10.4.6 Derive money management and risk settings 10.4.7
In-sample benchmarking 10.4.8 Out-of-sample benchmarking 10.4.9 Decide on
final product 10.5 Building a fundamental trading system with neural
networks 10.5.1 Splitting data 10.5.2 Benchmark initial rules 10.5.3
Identify specific problems 10.5.4 Identify inputs and outputs for ANN
10.5.5 Train the networks 10.5.6 Derive money management and risk settings
10.5.7 In-sample benchmarking 10.5.8 Out-of-sample benchmarking 10.5.9
Decide on final product Final Thoughts Appendices Script Segments
Bibliography Index