In 1988, the news of Egmont Köhler's untimely death at the age of 55 reached his friends and colleagues. It was widely felt that a lasting memorial tribute should be organized. The result is the present volume, containing forty-two articles, mostly in combinatorial design theory and graph theory, and all in memory of Egmont Köhler. Designs and graphs were his areas of particular interest; he will long be remembered for his research on cyclic designs, Skolem sequences, t-designs and the Oberwolfach problem. Professors Lenz and Ringel give a detailed appreciation of Köhler's research in the first article of this volume.
There is, however, one aspect of Egmont Köhler's biography that merits special attention. Before taking up the study of mathematics at the age of 31, he had completed training as a musician (studying both composition and violoncello at the Musikhochschule in Berlin), and worked as a cellist in a symphony orchestra for some years. This accounts for his interest in the combinatorial aspects of music. His work and lectures in this direction had begun to attract the interest of many musicians, and he had commenced work on a book on mathematical aspects of musical theory. It is tragic indeed that his early death prevented the completion of his work; the surviving paper on the classification and complexity of chords indicates the loss that his death meant to the area, as he was almost uniquely qualified to bring mathematics and music together, being a professional in both fields.
There is, however, one aspect of Egmont Köhler's biography that merits special attention. Before taking up the study of mathematics at the age of 31, he had completed training as a musician (studying both composition and violoncello at the Musikhochschule in Berlin), and worked as a cellist in a symphony orchestra for some years. This accounts for his interest in the combinatorial aspects of music. His work and lectures in this direction had begun to attract the interest of many musicians, and he had commenced work on a book on mathematical aspects of musical theory. It is tragic indeed that his early death prevented the completion of his work; the surviving paper on the classification and complexity of chords indicates the loss that his death meant to the area, as he was almost uniquely qualified to bring mathematics and music together, being a professional in both fields.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.