A unique and detailed account of all important relations in the analytic theory of determinants, from the classical work of Laplace, Cauchy and Jacobi to the latest 20th century developments. The first five chapters are purely mathematical in nature and make extensive use of the column vector notation and scaled cofactors. They contain a number of important relations involving derivatives which prove beyond a doubt that the theory of determinants has emerged from the confines of classical algebra into the brighter world of analysis. Chapter 6 is devoted to the verifications of the known determinantal solutions of several nonlinear equations which arise in three branches of mathematical physics, namely lattice, soliton and relativity theory. The solutions are verified by applying theorems established in earlier chapters, and the book ends with an extensive bibliography and index. Several contributions have never been published before. Indispensable for mathematicians, physicists and engineers wishing to become acquainted with this topic.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.