51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
51,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: ePub

Offering a new perspective, this book provides systematic design approaches for the identification, control, and recognition of nonlinear systems in uncertain environments. It introduces the concepts of deterministic learning theory and then discusses the persistent excitation property of RBF networks. The authors describe the theory of deterministic learning processes and address dynamical pattern recognition and pattern-based control processes. They present a new model of dynamical parallel distributed processing applicable to the detection and isolation of oscillation faults, ECG/EEG…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 8.63MB
Produktbeschreibung
Offering a new perspective, this book provides systematic design approaches for the identification, control, and recognition of nonlinear systems in uncertain environments. It introduces the concepts of deterministic learning theory and then discusses the persistent excitation property of RBF networks. The authors describe the theory of deterministic learning processes and address dynamical pattern recognition and pattern-based control processes. They present a new model of dynamical parallel distributed processing applicable to the detection and isolation of oscillation faults, ECG/EEG pattern recognition, robot learning and control, and security analysis and control of power systems.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Cong Wang, David J. Hill