In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). This book presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems. He gives a detailed structure theorem for canonical Seifert surfaces of a given genus and covers applications, such as the braid index of alternating knots and hyperbolic volume.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.