Wissenschaftlicher Aufsatz aus dem Jahr 2017 im Fachbereich Ingenieurwissenschaften - Schiffstechnik, Schiffsbau, Ozeantechnik, , Sprache: Deutsch, Abstract: Innovations derived from the analysis of biological systems can trigger downsizing campaigns. One goal is the design influence on technical parameters of a construction with the same performance of the system. Often, other geometric, functional and process control variables also change in a positive direction. In the following, the middle-hand bone system of the vertebrate is a model for load-adaptive artificial wings for surfboard fins with intelligent mechanics. The performance characteristics are improved, the geometry in a future design is more compact, geometry reduction, elasticity and compactness lead to an extremely robust, regenerative and therefore resilient wing system. The paper presents a similarity model, which is derived from the similarity theory and uses the dimensional analysis of the physical quantity to be examined. The Buckinghamian -Theorem is the paradigmatic core of this downsizing concept. It is subsequently applied to the shape optimization of a standardized surfboard Fin and numerical methods are used to simulate the flow properties of that fin. The result is an airfoil system which satisfies the criteria of "SuPerforming".